Джереми Блум - Изучаем Arduino: инструметы и методы технического волшебства

Тут можно читать онлайн Джереми Блум - Изучаем Arduino: инструметы и методы технического волшебства - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая околокомпьтерная литература, издательство БХВ-Петербург, год 2015. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Джереми Блум - Изучаем Arduino: инструметы и методы технического волшебства краткое содержание

Изучаем Arduino: инструметы и методы технического волшебства - описание и краткое содержание, автор Джереми Блум, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Книга посвящена проектированию электронных устройств на основе микроконтроллерной платформы Arduino. Приведены основные сведения об аппаратном и программном обеспечении Arduino. Изложены принципы программирования в интегрированной среде Arduino IDE. Показано, как анализировать электрические схемы, читать технические описания, выбирать подходящие детали для собственных проектов. Приведены примеры использования и описание различных датчиков, электродвигателей, сервоприводов, индикаторов, проводных и беспроводных интерфейсов передачи данных. В каждой главе перечислены используемые комплектующие, приведены монтажные схемы, подробно описаны листинги программ. Имеются ссылки на сайт информационной поддержки книги. Материал ориентирован на применение несложных и недорогих комплектующих для экспериментов в домашних условиях.
Для радиолюбителей

Изучаем Arduino: инструметы и методы технического волшебства - читать онлайн бесплатно полную версию (весь текст целиком)

Изучаем Arduino: инструметы и методы технического волшебства - читать книгу онлайн бесплатно, автор Джереми Блум
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Q1 - n-p-n биполярный плоскостной транзистор действует как ключ, включая и выключая внешний источник питания 9 В. Существуют два типа биполярных плоскостных транзисторов: n-p-n и p-n-p. Мы будем применять транзисторы типа n-p-n. Говоря упрощенно, n-p-n транзистор представляет собой переключатель, управляемый напряжением, что позволяет подавать или отключать ток;

R1 - резистор номиналом 1 кОм, соединяющий контакт платы Arduino с базой транзистора;

Рис 41 Схема включения двигателя постоянного тока 86 U 1 двигатель - фото 31

Рис. 4.1. Схема включения двигателя постоянного тока

- 86 -

U 1 - двигатель постоянного тока;

С 1 - конденсатор для фильтрации помех, вызванных работой двигателя;

Dl - диод для защиты блока питания от обратного напряжения.

4.3. Использование транзистора в качестве переключателя

Транзисторы применяются во многих устройствах: от усилителей до компонентов центрального процессора в компьютерах и смартфонах. У нас транзистор будет работать в качестве простого электрически управляемого переключателя. Каждый биполярный транзистор имеет три контакта (рис. 4.2): эмиттер (Е), коллектор (С) и базу (В).

Рис 42 Биполярный npn транзистор Между коллектором и эмиттером течет - фото 32

Рис. 4.2. Биполярный n-p-n транзистор

Между коллектором и эмиттером течет большой ток, величина которого зависит от малого тока базы. Изменяя ток базы, мы можем регулировать ток через транзистор и менять скорость вращения двигателя. Напряжения 5 В, подаваемого на выход Arduino, достаточно для включения транзистора. Используя ШИМ, можно управлять скоростью вращения двигателя. Поскольку механические детали двигателя обладают инерцией, быстрое переключение транзистора под действием ШИМсигнала с разной скважностью приведет к плавной регулировке скорости вращения.

4.4. Назначение защитных диодов

Одна из проблем электродвигателей постоянного тока - наличие противо-ЭДС.

В двигателе есть обмотки, в которых создается магнитный поток. При работе двигателя энергия магнитного поля запасается в обмотках. При выключении электродвигателя на концах обмотки возникает выброс напряжения обратной полярности, опасный для источника питания. Предотвратить воздействие электрических выбросов на внешние цепи можно с помощью защитных диодов. Подключив защитный диод, можно быть уверенным, что он устранит выброс напряжения при выключении двигателя.

- 87 -

4.5. Назначение отдельного источника питания

В схеме, изображенной на рис. 4.1, двигатель подключен к отдельному источнику напряжением 9 В, а не к контакту 5 В разъема USB. Для данного примера подойдет также внешний источник с напряжением 5 В. Внешний источник питания необходим по двум причинам:

• уменьшается вероятность повреждения платы Arduino при неправильном подключении электродвигателя;

• ток и напряжение могут быть больше, чем обеспечивает встроенный в Arduino источник питания.

Некоторые двигатели постоянного тока потребляют ток, больший, чем может выдать плата Arduino. Кроме того, рабочее напряжение многих двигателей превышает 5 В. Хотя они и будут вращаться при напряжении 5-вольтовом питании, но достичь заданной скорости вращения могут только при питании 9 или 12 В (в зависимости от технических характеристик двигателя).

ВНИМАНИЕ!

Обратите внимание, что необходимо соединить землю отдельного источника питания с землей Arduino. Это обеспечит общую точку между уровнями напряжения в двух частях схемы.

4.6. Подключение двигателя

Теперь, когда мы рассмотрели все тонкости управления щеточным двигателем постоянного тока, установим его макетную плату и подключим. Соберите схему, изображенную на рис. 4.1, а затем проверьте правильность монтажа по рис. 4.3. Важно научиться хорошо читать электрические схемы без использования графического макета.

Перед включением питания проверьте следующее:

• убедитесь, что земля от батареи 9 В соединена с землей платы Arduino, для этого можно общую шину земли на макетной плате, как показано на рис. 4.3;

• убедитесь, что провод питания +9 В не подключен к проводу питания +5 В;

• убедитесь, что транзистор подключен правильно;

• убедитесь, что диод включен правильно; конденсатор керамический, для него полярность не имеет значения.

Пришло время заставить двигатель вращаться. На вал двигателя можно прикрепить кусочек клейкой ленты, чтобы оценить скорость вращения. Перед написанием программы необходимо проверить работу схемы. Подсоединим батарею, подадим питание на плату Arduino через USB-кабель, подключим базу транзистора к выводу +5 В, это имитирует высокий логический уровень на выходном контакте Arduino.

Вал двигателя должен начать вращаться. При подключении базы транзистора

- 88 -

к земле двигатель останавливается. Если это не так, проверьте правильность монтажа. Если все работает как описано, переходим к следующему шагу - программированию.

Рис 43 Подключение двигателя постоянного тока 47 Управление скоростью - фото 33

Рис. 4.3. Подключение двигателя постоянного тока

4.7. Управление скоростью вращения двигателя с помощью шимпрограмма для управления скоростью вращения двигателя (листинг 4.1) будет похожа на программу регулировки яркости светодиодов ночника из главы 3. Появление на выходе платы Arduino ШИМ-сигнала вызывает быстрый запуск и остановку двигателя с разным периодом, что эквивалентно изменению скорости вращения.

- 89 -

Листинг 4.1. Автоматическое управление скорость двигателя - motor.ino

// Пример управления скоростью вращения двигателя

const int MOTOR=9;// Вывод 9 Arduino для подключения двигателя

void setup()

{

pinMode (MOTOR, OUTPUT);

}

void loop()

{

for (int i=0; i<256; i++)

{

analogWrite(MOTOR, i);

delay(10);

}

delay(2000);

for (int i=255; i>=0; i--)

{

analogWrite(MOTOR, i);

delay (10);

}

delay(2000);

}

Если все собрано правильно, то после запуска программы скорость вращения двигателя сначала плавно увеличится, а затем уменьшится. На основе описанного проекта можно сконструировать, например, макет движущегося робота.

Воспользуемся нашими знаниями аналоговых датчиков и попробуем вручную управлять скоростью вращения вала двигателя с помощью потенциометра. Подсоединим потенциометр к аналоговому входу A0, как показано на рис. 4.4. Обратите внимание, что контакт Arduino 5 В необходимо соединить с шиной питания на макетной плате.

Теперь изменим программу так, чтобы управлять скоростью вращения двигателя, регулируя положение ручки потенциометра. При полностью выведенном движке потенциометра двигатель остановлен, при полностью введенном - вал двигателя вращается с максимальной скоростью. Не забывайте, что контроллер Arduino работает очень быстро, цикл повторяется несколько тысяч раз в секунду! Поэтому малейшее изменение положения движка потенциометра сразу же сказывается на частоте вращения двигателя. Описанный алгоритм реализует программный код, приведенный в листинге 4.2. Загрузите программу в плату Arduino и регулируйте скорость вращения двигателя с помощью потенциометра.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джереми Блум читать все книги автора по порядку

Джереми Блум - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Изучаем Arduino: инструметы и методы технического волшебства отзывы


Отзывы читателей о книге Изучаем Arduino: инструметы и методы технического волшебства, автор: Джереми Блум. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x