Компьютерра - Журнал «Компьютерра» № 36 от 3 октября 2006 года

Тут можно читать онлайн Компьютерра - Журнал «Компьютерра» № 36 от 3 октября 2006 года - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая околокомпьтерная литература. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Компьютерра - Журнал «Компьютерра» № 36 от 3 октября 2006 года краткое содержание

Журнал «Компьютерра» № 36 от 3 октября 2006 года - описание и краткое содержание, автор Компьютерра, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Журнал «Компьютерра» № 36 от 3 октября 2006 года - читать онлайн бесплатно полную версию (весь текст целиком)

Журнал «Компьютерра» № 36 от 3 октября 2006 года - читать книгу онлайн бесплатно, автор Компьютерра
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Вам это удается?

— Иногда получается, хотя далеко не всегда. Но я надеюсь, круг моих последователей будет расти.

Пифагорейское суши с мыльными пленками

Сюжет спектакля Акиямы очень прост: сенсей демонстрирует простую, но красивую математику на подручном материале (тщательно спроектированном и подготовленном заранее). Трюки завораживают, после некоторых зал буквально ревет от восторга, — и так в течение двух часов без перерыва. Впрочем, мог сыграть роль и состав публики — на том единственном представлении, которое я видел, практически каждый из трехсот человек в переполненном конференц-зале «Стекловки» был либо профессором математики, либо продвинутым матшкольником или студентом. Если же вычесть из полученного комплекса впечатлений оригинальность и очарование деревянных, бумажных, пластиковых и даже мыльных моделей, незаурядную личность автора, его юмор, пластику, музыкальность, — то для пересказа на бумаге останется сравнительно немногое, к чему я и перехожу (в надежде, что фотографии Саши Маслова помогут прояснить картину).

Спектакль состоял из пяти частей Началось дело поволандовски с - фото 22

Спектакль состоял из пяти частей. Началось дело по-воландовски, с «простенького». Берется бумажная пирамидка, сделанная из пяти слоев разноцветной бумаги (почему слоев именно пять, осталось непроясненным — вот теперь ходи и думай…). Разрезается по любому контуру так, чтобы получилась единая плоская поверхность — в данном случае пять идентичных по форме, но разноцветных бумажных заплаток (фото 1). Потом Акияма раскладывает их на доске, впритык друг к другу — и вдруг оказывается, что они стыкуются абсолютно точно, без малейшего зазора, образуя идеальный паркет. Красиво, неожиданно? Й-е-с-с-с-с! А как вы думаете (и вы, читатель) — если разрезать вот так же не пирамидку, а кубик, тоже получится паркет? Публика тут же начинает скрипеть мозгами, но сенсей умело двигает шоу, и быстро дает ответ — не всегда! А как вы думаете — из каких бумажных многогранников получается паркет, а из каких — не получается? Оказывается, недавно сенсей решил эту задачу, доказал теорему — желающим узнать ответ дадут оттиск статьи после лекции. А показывал все это сенсей для того, чтобы все поняли — найти и доказать новую теорему может каждый, и это такой же улет, как писать стихи или рисовать или заниматься скульптурой…

Затем сенсей демонстрирует десяток пирамидок разрисованных в виде головы тунца - фото 23 Затем сенсей демонстрирует десяток пирамидок разрисованных в виде головы тунца - фото 24

Затем сенсей демонстрирует десяток пирамидок, разрисованных в виде головы тунца (фото 2). «В Москве знают, что такое суши?» — обращается он к залу. «Знают!!» — раздается запрограммированный ответ (эх, слукавил Акияма, что не умеет программировать). «Сейчас сделаем из этой рыбы суши! — объявляет профессор. — Как вы думаете, какой формы оно может быть? Однажды я выступал в рыбацкой деревушке на крошечном острове, и один маленький мальчик спросил, бывают ли теоремы о рыбах. Специально для него я придумал такую теорему. Она гласит, что из бумажной головы тунца в форме пирамидки можно вырезать пятиугольное суши, похожее на план японского деревенского дома — но суши в виде правильного пятиугольника не вырежешь, как ни старайся (фото 3)».

А вообщето если уж говорить о бумажных фигурках есть такой парнишка - фото 25

А вообще-то — если уж говорить о бумажных фигурках, — есть такой парнишка, продолжает Акияма, зовут его Эрик Демейн (Erik Demaine), сейчас ему всего 24 года, но он уже доцент (associate professor) в MIT, а в 17 лет он прислал мне статью, где доказывал, что любой многоугольник — да хоть вот такого лебедя (ассистент Джина, Тошинори Сакаи показывает контур лебедя (фото 4)) можно вырезать из бумаги одним прямолинейным разрезом [От себя добавлю, что недавно Эрик доказал еще и NP-полноту игры в тетрис]. Только сначала надо правильно сложить бумагу (Тошинори передает учителю листок — и фокус успешно выполнен!). Потрясающая теорема — и тоже совсем рядом.

Это был неполный пересказ первой из пяти частей шоу Акиямы Надеюсь что хоть - фото 26 Это был неполный пересказ первой из пяти частей шоу Акиямы Надеюсь что хоть - фото 27

Это был неполный пересказ первой из пяти частей шоу Акиямы. Надеюсь, что хоть какое-то представление о содержании и стиле читатель получил. Сайт www.etudes.ru вел прямую интернет-трансляцию, думаю, что там появятся дополнительные материалы. С моей точки зрения, абсолютным хитом была третья часть — «Математика и музыка». Акияма извлек весьма колоритный аккордеон («научился играть четыре года назад») и с очаровательной хрипотцой спел некую «русскую песню, известную во всем мире в обработке Ива Монтана»2. Когда аплодисменты смолкли, он сообщил, что из двухсот двадцати возможных трезвучий наиболее приятны для слуха три — до-ми-соль, до-фа-ля, си-ре-соль (фото 5). На «шкале нот» дистанции между нотами в каждом из этих трезвучий таковы: 4-3-5, 5-4-3, 3-5-4 (это он показывал на круговом ксилофоне, фото 6).

Почему это так загадка Но кто может сказать чем замечательна числовая - фото 28

Почему это так — загадка. Но кто может сказать, чем замечательна числовая последовательность 3-4-5? — обратился он к залу. «Egyptian triangle! — провозгласил кто-то из продвинутых детей. — Это знаменитый „египетский“ прямоугольный треугольник со сторонами 3, 4 и 5!» «Вот именно — прямоугольный, обрадовался Акияма. — И сейчас я вам докажу теорему Пифагора за пять секунд — с помощью вот этого механизма». И правда, при повороте плексигласового колеса квадраты катетов аккуратно сложились в квадрат гипотенузы, вызвав бурю восторга в зале. «А можно и вообще без квадратов, — заключил эту тему сенсей. — Вот как выглядит теорема Пифагора „в слонах“ (фото 7): если длина и рост слона-мамы и слона-беби пропорциональны катетам, то их общий вес будет равен весу слона-папы, который живет на гипотенузе»…

Акияма умело вплетал в свой спектакль и успехи японских инженеров В основе - фото 29

Акияма умело вплетал в свой спектакль и «успехи японских инженеров». В основе роторного двигателя «Мазды» — геометрия криволинейного треугольника Рело (фото 8). Коды, исправляющие ошибки, он иллюстрировал, царапая гвоздем (строго по радиусу) «очень дорогой компакт—диск с записью русской музыки» — на качество звука повреждения не повлияли (коррекцию ошибок для CD разработали, как известно, в Sony). Показал и собственное, наполовину шуточное изобретение — дрель для сверления квадратных дырок Обсудил геометрию канализационных люков — почему их делают круглыми, а не треугольными или квадратными? Завершилось же мероприятие демонстрацией нахождения кратчайших путей при помощи мыльных пленок — проецируемых на экран чуть ли не прямо из тазика с настоящей мыльной водой (фото 9).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Компьютерра читать все книги автора по порядку

Компьютерра - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Журнал «Компьютерра» № 36 от 3 октября 2006 года отзывы


Отзывы читателей о книге Журнал «Компьютерра» № 36 от 3 октября 2006 года, автор: Компьютерра. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x