Компьютерра - Журнал Компьютерра №769
- Название:Журнал Компьютерра №769
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Компьютерра - Журнал Компьютерра №769 краткое содержание
Журнал Компьютерра №769 - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Плоские управляемые массивы из микролинз могут найти массу приложений в телекоммуникационной индустрии и различных оптических системах. Особенно интересно их применение в голографии. Однако пока ученые лишь в самом начале пути коммерциализации новой технологии. ГА
Физикам из Калифорнийского технологического института и Калифорнийского университета в Беркли впервые удалось изготовить высококачественный микрорезонатор для поверхностных плазмонов-поляритонов. Эта работа открывает новый путь для создания нанолазеров и других миниатюрных оптических устройств, встраиваемых непосредственно в чипы.
Удивительный резонатор похож на гриб, шляпка которого имеет диаметр около 20 мкм и напоминает перевернутую тарелку с острыми краями. Идеально гладкая шляпка изготовлена из чистейшего кремния и сверху покрыта тонким слоем серебра; под ней проходит оптическое волокно, передающее излучение резонатора во внешний мир.

Собственно резонатором является только шляпка "гриба", которая работает, используя сразу несколько любопытных физических эффектов. Вместо обычных для оптики фотонов в ней резонируют поверхностные плазмоны-поляритоны. Эти квазичастицы являются квантами совместных колебаний электромагнитного поля в кремнии и плазмы свободных электронов серебра. Плазмоны-поляритоны замечательны тем, что их волны намного короче, чем у фотонов. А именно эта характерная величина порядка микрона, существенно меньше которой невозможно сделать ни одно фотонное устройство, мешает фотонике конкурировать с традиционной электроникой.
К сожалению, беда плазмонных волн в том, что из-за различных дефектов поверхности и рассеяния электронов в металле они быстро затухают. До сих пор на основе плазмонов-поляритонов не удавалось изготовить ни достаточно длинных волноводов, ни качественных резонаторов с малыми потерями. В новом резонаторе потери удалось уменьшить в тридцать раз за счет идеально гладкой поверхности и использования так называемого режима шепчущей галереи: плазмоны-поляритоны при этом движутся по кругу вблизи края шляпки. Этот удивительный эффект для звуковых волн был известен еще в древности, и его можно наблюдать в ряде знаменитых сооружений: шепот там хорошо слышен на большом расстоянии вблизи стен и совсем не слышен в зале.
Добротность нового резонатора при комнатной температуре близка к теоретическому пределу, обусловленному потерями в слое серебра. Резонатор можно использовать для создания лазеров, модуляторов и других устройств, в том числе основанных на различных нелинейных эффектах. И хотя его размеры пока довольно велики, сегодня важнее демонстрация работоспособности концепции. А миниатюризацией резонатора ученые намерены заняться в ближайшее время. ГА
Физикам из Мэрилендского университета удалось телепортировать квантовую информацию между двумя ионами, находящимися на расстоянии метра друг от друга. Эта операция оказывается успешной с вероятностью 90% и знаменует собой важный шаг на пути к созданию новых квантовых информационных систем.
Как известно, нежная и неуловимая квантовая информация обладает рядом удивительных свойств. Например, ее нельзя просто скопировать как классическую, поскольку измерение квантового кубита разрушает его квантовое состояние (то есть хранившуюся в нем информацию). Зато квантовую информацию можно телепортировать — переписать из одного кубита в другой, стирая ее в первом, так никогда и не узнав, что же в нем хранилось. Впервые эту нетривиальную процедуру удалось проделать в 1997 году для кубитов, физически реализованных в состояниях поляризации фотонов. И теперь телепортировать состояния фотонов даже на значительные расстояния уже не проблема. Но хотя квантовую информацию и удобно передавать фотонами, долго хранить ее лучше в состояниях атомов или ионов. Пять лет назад удалось впервые телепортировать закодированную в спине квантовую информацию между ионами бериллия, однако они находились в одной ловушке вблизи друг от друга.

Теперь ученые смогли продвинуться еще дальше, телепортировав квантовое состояние одного иона редкоземельного металла иттербия другому такому же. Второй ион располагался в собственной вакуумной электромагнитной ловушке в метре от первой. Впрочем, в дальнейших экспериментах это расстояние будет нетрудно увеличить.
Для телепортации ученые использовали достаточно сложную процедуру. Сначала ионы находились в основном состоянии с наименьшей энергией. Затем их возбуждали одинаковыми импульсами микроволнового излучения, загоняя в состояние суперпозиции двух квантовых уровней. После этого оба иона еще раз возбуждали пикосекундными лазерными импульсами, энергию которых ионы вскоре сбрасывали в виде единичных фотонов. Энергия или цвет этих фотонов определялись квантовыми состояниями ионов, что и позволило "вытянуть" информацию о них и передать ее на расстояние. По световодам испущенные атомами фотоны попадали в оптическую систему из полупрозрачного зеркала и фотодетекторов, которая позволила определить, что ионы находятся в запутанном состоянии. Наконец, состояние одного из них измеряли с помощью процедуры, известной как квантовая томография, и восстанавливали такое же квантовое состояние второго иона дополнительным микроволновым импульсом.
Авторы считают, что этот метод может стать основой ионной квантовой памяти для пока иллюзорных квантовых компьютеров и уже существующих квантовых телекоммуникационных систем. Теперь ученые собираются повысить вероятность успеха телепортации, поместив ионы в специальные оптические ловушки, которые лучше изолированы от влияния внешней среды. ГА
Физики-теоретики из Ренсселерского политехнического института показали, что электронными характеристиками графена можно управлять, меняя химические свойства подложки. Если их выкладки подтвердятся в ходе экспериментов, многие препятствия, стоящие на пути использования этого уникального материала в электронике, вскоре удастся преодолеть.
В последние годы научные журналы буквально пестрят публикациями о графене. Благодаря своей плоской структуре, вкупе с высокими прочностью, теплопроводностью и скоростью движения электронов, этот материал является наиболее вероятным кандидатом на роль заместителя кремния в наноэлектронике будущего. Из графена уже сделаны отменные транзисторы и другие компоненты электронных схем, но несмотря на впечатляющие успехи ученых, до массового производства подобных устройств пока далеко.
Читать дальшеИнтервал:
Закладка: