Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]
- Название:Роман с Data Science. Как монетизировать большие данные [litres]
- Автор:
- Жанр:
- Издательство:Издательство Питер
- Год:2021
- Город:Санкт-Петербург
- ISBN:978-5-4461-1879-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres] краткое содержание
Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.
В формате PDF A4 сохранен издательский макет.
Роман с Data Science. Как монетизировать большие данные [litres] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Первый шаг
Когда передо мной стоит задача сделать аналитическую систему или существенно расширить ее возможности, я всегда использую двусторонний подход: определяю, какие задачи и вопросы перед нами стоят, и выясняю, какие данные есть в источниках.
Чтобы сформировать список задач, необходимо провести интервью со всеми потенциальными потребителями информации, кого это может коснуться. Создавая дизайн системы для пользователей, нужно знать ответы на следующие вопросы:
• Какие метрики понадобится считать?
• Какие дашборды собрать?
• Какую информацию отправить в интерактивные системы?
• Будут ли тут задачи ML (машинное обучение)?
Сложность этого шага в том, что потребители (заказчики) не всегда представляют, какая именно информация им понадобится. И для того чтобы выстроить эффективную систему, аналитику необходимо самому обладать хотя бы минимальной экспертизой в том бизнесе, который он анализирует. После работы в интернет-магазинах мне поначалу было непросто в Ostrovok.ru (система бронирования отелей) – да, продажи идут тоже через интернет, но тут понадобились очень специфические знания отельного бизнеса. Ваша собственная экспертиза помогает вам во время интервью с заказчиком задавать правильные вопросы и на основе ответов формировать структуру данных, которые понадобятся для решения задач клиента.
Затем я иду к разработчикам и начинаю узнавать, а что же, собственно, у них есть – какие данные они собирают и где эти данные находятся. Во-первых, меня интересуют данные, которые помогут решать задачи клиента (мне важно увидеть не только схемы, но и живые примеры таких данных – строки таблиц и файлов). Во-вторых, для меня важны те данные, которые есть, а применения им пока нет – какие задачи они могли бы решить? К финалу этого этапа у меня уже есть:
• Список вопросов, которые покрываются текущими данными.
• Список вопросов без данных и понимание того, сколько усилий потребуется, чтобы их получить.
• Данные, которые пока не решают никаких актуальных задач.
• Источники данных и их примерные объемы.
И это только первая итерация. С этим списком я иду к заказчикам, общаюсь с теми же людьми, объясняю им, можно ли ответить на их вопросы, нужны ли дополнительные данные – а потом снова иду к разработчикам. Выглядит как челночная дипломатия, но именно так я и строю план проекта.
В итоге у меня есть: список требований к системе, список имеющихся данных и задач, которые нужно выполнить, чтобы получить недостающие цифры. Выглядит просто, но бывает, что на эти шаги уходят недели. Я не выгружаю бездумно все данные из хранилища, чтобы потом начать с ходу пытаться делать метрики и дашборды. Но пытаюсь решить эту задачу в уме. Это мне сэкономит силы, а заказчикам сбережет нервы. Они заранее будут знать, что получится сразу, а что нет.
Выбираем технологии
Это будет моим вторым шагом. Правильный технологический стек избавит вас от головной боли на несколько лет вперед. Детально технологии я буду обсуждать в следующих главах. Сейчас обрисую общую картину. Примерный список вопросов к технологиям звучит так:
• Собственное хранилище или облачное?
• Использовать ли open-source-технологии?
• Какой язык программирования использовать для артефактов инженерии?
• Можем ли отдать разработку аналитики стороннему подрядчику?
• Какую отчетную систему выбрать?
• Требуется ли где-нибудь скорость анализа, близкая к real-time?
Это самые базовые вопросы, но от них зависит многое. В том числе каких сотрудников нанимать, сколько придется инвестировать, как быстро запустится проект.
Насчет хранилища данных у меня обычно следующее правило: если компания собирается зарабатывать на данных существенную часть своей выручки, то лучше собственное хранилище. Если для компании аналитика – вспомогательный проект, то лучше использовать облачное хранилище.
Цель работы коммерческой компании – прибыль. Прибыль является разностью выручки и затрат, куда входит и себестоимость хранилища. И может быть довольно большой, если данные хранятся в облаке. Ее можно оптимизировать, создав собственное хранилище. Да, тут будут затраты на администрирование. Внимания такая система будет требовать больше. Но и способов снизить затраты у вас будет явно больше, система будет намного гибче. Если же аналитическая система не имеет такого прямого влияния на P&L (прибыли и убытки), то гораздо проще будет работать с облачным хранилищем. Тогда вам не придется думать об отказавших серверах – «облака» сделают за вас свою работу сами.
Технологии open-source (свободно распространяемое ПО с открытым исходным кодом) имеют очень большой вес в аналитике. Впервые я столкнулся с ними, когда учился на Физтехе. На втором курсе у меня появился компьютер, он имел очень слабую производительность даже по тем временам, поэтому я установил туда Linux. Часами компилировал ядро под свои нужды, учился работать в консоли. И это пригодилось мне ровно через десять лет. Именно тогда я посетил офис компании Netflix в Лос-Гатосе (Калифорния) и познакомился с директором по аналитике Эриком Колсоном. Он рассказал тогда об инструментах, которые используют его сотрудники в работе, и даже нарисовал маркерами на доске их названия. И как раз он много говорил об открытом ПО для анализа данных, таком как Python, Hadoop и R. До этого я пользовался только коммерческим софтом, но несколько месяцев спустя по следам этой встречи, летом, в пустом офисе, когда все сотрудники офиса Wikimart.ru отправились на корпоратив, я написал первые 9 строчек кода на языке Pig для платформы Hadoop (тут мне пригодилось знание Linux). На это ушло 4 часа. Тогда я еще не знал, что через несколько лет именно на этом языке и на этой платформе будет написан «мозг» рекомендательной системы Retail Rocket. К слову сказать, вся аналитическая система RR, как внутренняя для принятия решений, так и вычислительная для расчета рекомендаций, написана с использованием только open-source-технологий.
Сейчас, оборачиваясь в прошлое, я могу сказать, что Retail Rocket – это самое крутое, что я сделал в своей карьере: компания быстро вышла в прибыльность, успешно конкурирует с западными аналогами, и сейчас там работает больше сотни сотрудников по всему миру с основными офисами в Москве, Тольятти, Гааге, Сантьяго, Мадриде и Барселоне. Российская компания развивается и создает рабочие места за рубежом! Сейчас вектор развития изменился: RR продает не только рекомендательную систему, но и много сопутствующих услуг для интернет-магазинов. Технологии анализа больших данных и машинного обучения, которые мы создали в далеком 2013 году, актуальны до сих пор, и я очень горд, что мы были на голову выше наших конкурентов в технологическом плане.
Читать дальшеИнтервал:
Закладка: