Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]

Тут можно читать онлайн Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres] - бесплатно ознакомительный отрывок. Жанр: comp-db, издательство Издательство Питер, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Роман с Data Science. Как монетизировать большие данные [litres]
  • Автор:
  • Жанр:
  • Издательство:
    Издательство Питер
  • Год:
    2021
  • Город:
    Санкт-Петербург
  • ISBN:
    978-5-4461-1879-3
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres] краткое содержание

Роман с Data Science. Как монетизировать большие данные [litres] - описание и краткое содержание, автор Роман Зыков, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.
Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.
В формате PDF A4 сохранен издательский макет.

Роман с Data Science. Как монетизировать большие данные [litres] - читать онлайн бесплатно ознакомительный отрывок

Роман с Data Science. Как монетизировать большие данные [litres] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Роман Зыков
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Когда стоит связываться с коммерческим ПО? Ответ: когда на это есть деньги. Практически у любого коммерческого ПО есть open-source-аналог. Да, как правило, они хуже, особенно в каких-то деталях. Например, я так и не нашел достойный open-source-аналог для OLAP-кубов. Отчетные системы тоже выглядят недоделанными. Но что касается инженерных технологий, таких как Hadoop, Spark, Kafka, – то это очень надежные и мощные инструменты разработчиков. Они очень хорошо зарекомендовали себя в коммерческом применении.

Обсудим языки программирования, которые будут использоваться при разработке системы. Мой принцип – чем их меньше, тем лучше. До Retail Rocket мне удавалось обходиться одним SQL. Правда, для перекачивания данных (ETL) из источника в хранилище приходилось использовать специальные коммерческие инструменты от Microsoft. В Retail Rocket в свое время использовалось аж четыре языка программирования для создания рекомендаций: Pig, Hive, Java, Python. Потом мы заменили их все на Scala, так как он относится к семейству JVM, на котором написана Hadoop. Поэтому на нем очень легко программировать на платформе Hadoop/Spark, для последней он еще является родным. Но пару лет назад мы стали использовать Python и SQL. Здесь пришлось отойти от Scala – некоторые вещи на нем делать было неудобно.

Scala – прекрасный и изящный язык программирования, но мы уперлись в две проблемы. Во-первых, пользователям очень сложно было бы работать с ним в качестве интерфейса к данным, для этого намного лучше подходит SQL. Во-вторых, все современные библиотеки машинного обучения сейчас пишутся на Python. Сейчас Scala используется для разработки центрального ядра системы, агрегации и доставки данных, SQL для отчетов, Python для разработки моделей машинного обучения и несложных прототипов. Обычно выбор языка программирования зависит от нескольких вещей:

• для какой системы он будет использоваться (например, SQL идеально подходит для баз данных);

• есть ли специалисты по этому языку в вашей компании и на рынке.

Например, заставлять пользователей вашей системы учить сложные в освоении языки программирования для доступа к данным – плохая идея. Для пользователей это вспомогательный инструмент, и много времени на его изучение они тратить не захотят.

Специалисты на рынке – моя головная боль. Scala – очень редкий язык, довольно непростой в изучении. Специалистов на рынке очень мало, а имеющиеся стоят дорого. Вот на Python работают очень многие. Хотя за одного Scala-разработчика я бы дал трех на Python. Здесь мы приняли сознательное решение: качество нашей работы для нас важнее, поэтому выбрали Scala. Нанимать готовых Scala-людей почти не получалось, поэтому мы сделали свой курс молодого бойца [19], когда новичок в течение полугода обучается программировать на нем.

Поговорим об аутсорсе

Обсудим возможность привлечения внешнего подрядчика для создания аналитической системы. Ему на откуп можно отдать разные аспекты:

• создание и поддержка технической части системы;

• аналитическая часть;

• выделенные задачи.

Когда требуется сократить время развертывания технической части проекта и получить качественный результат – нужен хороший подрядчик. Но попробуй его еще найди! Мало того что редкий подрядчик достаточно глубоко знает предмет – ситуация часто усугубляется тем, что заказчик не знает, чего хочет.

В одной из компаний, где я работал, была собрана команда для реализации проекта. Проект не аналитический, в теории он выглядел замечательно. К тому же командой руководил человек, который преподавал проектирование таких систем чуть ли не в топовом университете. Для технической реализации были выбраны самые «современные» технологии. В итоге три или четыре разработчика писали эту систему целый год. В попытке запустить ее потратили целые сутки… Не завелось, и всю систему выбросили на свалку. То же самое может случиться и с аналитикой. Теория очень сильно отличается от практики, тем более в нашем быстро меняющемся мире.

Риск уменьшится, если привлечь очень опытного аналитика, который не раз лично реализовывал подобные проекты. На вашем проекте он будет выступать в качестве независимого советника или даже арбитра. Это нужно, чтобы, с одной стороны, «приземлить» заказчика, с другой – ограничить подрядчика. Я считаю, что проект на старте лучше сильно урезать по «хотелкам», чтобы получить на выходе работающую версию как можно быстрее. На то есть несколько причин. Во-первых, после того как вы, заказчик, вживую поработаете с ней, вам гораздо легче будет сформулировать, что вы действительно хотите. Это тяжело делать абстрактно на бумаге, конструируя сферического коня в вакууме. Вторая причина – драйв, лично для меня это очень важно. Когда время течет медленно, у команды, да и у заказчиков, постепенно угасает интерес. И на выходе мы уже получаем вымученный проект, которым уже не так сильно хочется заниматься.

Если нет возможности найти советника – попытайтесь хоть немного разобраться в вопросе самостоятельно, почитайте книгу, посмотрите видеозаписи конференций. Иначе велика вероятность, что проект просто не взлетит. А если и взлетит, то будет потрачено много времени и денег.

Хорошо, если можно отдать на аутсорс технологическую часть, но можно ли это сделать с аналитикой? Общий ответ – нет. Сторонние аналитики никогда не будут обладать всей полнотой бизнес-контекста. С другой стороны, аутсорс аналитики какого-то направления вполне возможен. Например, рекламного.

Еще один вариант аутсорса – отдать какую-то часть проекта целиком: вы отдаете данные, а на выходе получаете готовый продукт. Пример такого сотрудничества – компания Retail Rocket. Начали мы бизнес с товарных рекомендаций. Интернет-магазины отдавали нам данные и товарную базу, на выходе они получали готовые рекомендации. Лично у меня идея такого бизнеса зародилась во время работы в компании Wikimart.ru. Я сделал рекомендации для сайта компании и подумал: почему бы не запустить тиражируемое решение. Это бы сняло необходимость интернет-магазину нанимать инженеров машинного обучения и изобретать велосипед. Результат получался гораздо быстрее, буквально за неделю. Среднее качество рекомендаций нашего сервиса гораздо лучше внутренней разработки. Если бы меня наняли сейчас в интернет-магазин, то, скорее всего, я бы привлек внешний сервис рекомендаций вместо того, чтобы делать собственную разработку.

Немного расскажу о своем личном опыте работы на аутсорсе. В 2009 году я ушел из Ozon.ru. В то время у меня был достаточно популярный блог по аналитике KPIs.ru, созданный за пару лет до этого. И оттуда ко мне стали приходить запросы на консалтинг по аналитике из самых разных сфер: разработчики игр, e-commerce, венчурный фонд и т. д. Потихоньку я стал наращивать темп консультаций, одновременно работая на три компании. Первой я помог выбрать нужную технологию и нанять людей в команду, проводил собеседования. Второй – помогал растить стартапы. В третьей компании я поработал руками, подняв аналитическую систему. Мне этот опыт много дал – прежде всего я помогал компаниям, не отвлекаясь на корпоративные детали и бюрократию, как было бы, работай я в штате. Ну а компаниям моя работа позволила осуществлять быстрый старт проектов. Кстати, в третьей компании я в результате остался работать (это был Wikimart.ru): ее основатель предложил мне возглавить отдел аналитики – и я согласился, потому что в тот момент хотел быть ближе к данным и работать руками. На этом тогда закончился мой аутсорс.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Роман Зыков читать все книги автора по порядку

Роман Зыков - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Роман с Data Science. Как монетизировать большие данные [litres] отзывы


Отзывы читателей о книге Роман с Data Science. Как монетизировать большие данные [litres], автор: Роман Зыков. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x