Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]

Тут можно читать онлайн Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres] - бесплатно ознакомительный отрывок. Жанр: comp-db, издательство Издательство Питер, год 2021. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Роман с Data Science. Как монетизировать большие данные [litres]
  • Автор:
  • Жанр:
  • Издательство:
    Издательство Питер
  • Год:
    2021
  • Город:
    Санкт-Петербург
  • ISBN:
    978-5-4461-1879-3
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres] краткое содержание

Роман с Data Science. Как монетизировать большие данные [litres] - описание и краткое содержание, автор Роман Зыков, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.
Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.
В формате PDF A4 сохранен издательский макет.

Роман с Data Science. Как монетизировать большие данные [litres] - читать онлайн бесплатно ознакомительный отрывок

Роман с Data Science. Как монетизировать большие данные [litres] - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Роман Зыков
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Неверная конфигурация теста – самая частая проблема. Допустим, вы придумали гипотезу, у вас есть метрика, вы написали техническое задание на проведение теста. Если это ML-модель, то вы заранее провели офлайн-тесты – все было хорошо. После реализации теста и выкладки его в рабочую систему его нужно обязательно проверить. Если это сайт, то прощелкать нужные ссылки, проверить, что обеим группам показываются нужные версии страниц. А теперь представим, что тест запущен и в нем есть ошибка. Прошел месяц, пора считать результаты. Наше сознание заставляет нас искать ошибки, если результаты получились плохими, и просто радоваться, если результаты положительные. Но если в тесте была ошибка, то много времени было потрачено впустую и тест придется перезапускать. У меня на практике такое было сплошь и рядом. В результате мы в Retail Rocket разработали целый бизнес-процесс по запуску тестов с инструкциями по проверке. Такие ошибки очень дорого обходятся.

Плохой генератор случайных чисел для разделения всех пользователей на тестовую и контрольную группы тоже может быть проблемой. Надежный способ обнаружения такой проблемы – A/A-тесты. Второй вариант – симуляция. Тогда вам нужно точно повторить код разработчиков, который назначает сегменты, и проверить его работу на старых логах пользователей, то есть произвести имитацию A/B-теста. С такими генераторами часто возникают проблемы, поэтому команда инженеров написала свой вариант и выложила его исходный код в сеть [85].

Неверный критерий тоже может дать свою погрешность. Я бы рекомендовал в целях проверки делать симуляционные тесты выбранного статистического критерия. Это можно делать как с помощью генераторов распределений, так и с помощью уже имеющихся логов действий пользователя (если есть). Например, сделав два случайных генератора с одинаковыми исходными данными, нужно убедиться, что статистический критерий не показывает значимость. Затем сделать небольшую разницу между генераторами и убедиться, что статистическая значимость появилась. Также рекомендую сделать анализ мощности – сколько данных нужно, чтобы этот критерий показал статистическую значимость на какой-то минимальной для вас важности. Например, вы готовы внедрить новое улучшение только в том случае, если оно улучшает метрику на 1 %. Тогда вы делаете два генератора с этой разностью и моделируете работу критерия, чтобы понять, сколько точек данных вам нужно, чтобы заметить эту разницу. Это и будет вашим минимальным объемом выборки данных.

Проблема подглядывания за результатами теста лично мне хорошо знакома. Она возникает, когда тест не набрал еще необходимых данных, а мы уже пытаемся увидеть его результаты. Статистическая значимость теста – это тоже случайная величина, и она «скачет» в первое время после запуска теста. Так происходит и на симуляциях тестов, и в реальных условиях. Я столкнулся с этим впервые в компании Ostrovok.ru, когда А/Б-тесты были выведены на дашборды офисных мониторов. Мне позвонил CEO с вопросом, почему результаты значимости недавно запущенного теста прыгают туда-сюда. Поэтому если вы примете решение в этот момент, признав тест успешным, то совершите ошибку, так как через некоторое время тест «устаканится» и будет показывать отсутствие статистической значимости. Я считаю, что единственный способ решить проблему подглядывания – определить минимально детектируемую разницу в метриках, которая вас устроит. По ней с помощью калькулятора мощности или симуляций вычисляется нужный объем выборки. И именно после достижения нужного объема данных можно смотреть на результат и принимать решения. Здесь вы столкнетесь с дилеммой – если разница слишком мала, то понадобится очень много данных, что плохо для бизнеса. Потому что чтобы получить много данных, придется долго ждать – тратить время. Рекомендую понять, сколько времени вы готовы ждать, и уже исходя из этого определить минимально детектируемую разницу. Минимальная длительность теста также ограничена бизнес-циклом принятия решений клиентами. Например, если мы знаем, что среднее время принятия решения о покупке составляет три дня, то тест должен идти не меньше двух бизнес-циклов – шесть дней. До этого времени за тестом можно приглядывать, но только с целью обнаружить пропущенные технические ошибки.

Хороший пост-анализ эксперимента гипотезы может помочь понять, что еще можно сделать для улучшения метрики. Как я уже писал, желание обнаружить ошибку, когда тест новой версии продукта провалился, естественно, как и его отсутствие, когда тест выигран. В Retail Rocket мы действительно находили в тестах ошибки не только технического характера, но и идейного. Для этого обычно применяли сводные таблицы и искали проблемы во множестве срезов. Очень приятное чувство, когда находишь ошибку или придумываешь модификацию гипотезы и побеждаешь в следующем тесте. Это можно делать и для положительных тестов, чтобы искать новые идеи по улучшению продукта.

А/А-тесты

Впервые про A/A-тесты я услышал от Ди Джея Патила – до этого я никогда к ним не прибегал. А/А-тест – это проверка последней мили, всего того, что вы сделали для теста: генератора случайных чисел, схемы сбора данных и выбранного статистического критерия для метрики. Сам тест запускается с реальным делением аудитории на две части, но в контрольной и тестовой группах используется одна и та же версия продукта. В финале вы должны получить сходящийся тест без опровержения нулевой гипотезы, так как версия продукта одна и та же.

Первое, что нужно проверить, – насколько хорошо работает генератор случайных чисел, по значениям которого будет происходить разделение на группы в тесте. Само назначение на группы можно делать двумя способами: через назначение случайного числа и через хеширование информации об объекте. Когда пользователь посещает сайт, обычно ему в куки пишут его идентификационный номер. Этот номер используется для того, чтобы узнать пользователя при повторном посещении. Для A/B-тестов этот номер хешируется, то есть его превращают из текста в число, далее берут две или три последние цифры для распределения по группам: 00–49 контрольная группа, 50–99 тестовая. Похожий принцип реализован в нашем проекте Retail Rocket Segmentator [85]. В А/А-тесте вы должны получить то же самое распределение, что и в тесте! Если распределение задано пополам, 50/50, то вы его и должны получить на выходе. Даже небольшие расхождения в 3 % в данных теста могут поставить под угрозу весь тест. Если в тесте есть 100 000 пользователей, вы хотите разделить их пополам, а в итоге получается в одной группе 48 000, а в другой 52 000 – это говорит о проблемах в «случайности» разбиения по группам. Эти распределения можно проверить и на симуляциях, когда вам точно известен алгоритм. Но моя практика показывает, что мелкие нюансы разработки, о которых мы не знаем, могут приводить к «сдвигам» распределений. Поэтому я больше доверяю A/A-тестам.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Роман Зыков читать все книги автора по порядку

Роман Зыков - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Роман с Data Science. Как монетизировать большие данные [litres] отзывы


Отзывы читателей о книге Роман с Data Science. Как монетизировать большие данные [litres], автор: Роман Зыков. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x