Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres]
- Название:Роман с Data Science. Как монетизировать большие данные [litres]
- Автор:
- Жанр:
- Издательство:Издательство Питер
- Год:2021
- Город:Санкт-Петербург
- ISBN:978-5-4461-1879-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Роман Зыков - Роман с Data Science. Как монетизировать большие данные [litres] краткое содержание
Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.
В формате PDF A4 сохранен издательский макет.
Роман с Data Science. Как монетизировать большие данные [litres] - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Воронка продаж выглядит почти как обычная воронка – посетитель сайта «проваливается» по ней, пока не достигнет целевого действия, например заказа. В среднестатистическом интернет-магазине конверсия посетителя в заказ составляет обычно один процент, то есть лишь каждый сотый посетитель доходит до дна воронки продаж и совершает покупку. Улучшению этого показателя уделяется очень много времени, ведь если растет конверсия сайта, то вы зарабатываете больше при тех же затратах на рекламу. Хотя реклама рекламе рознь: можно гнать на сайт небольшой поток почти готовых покупателей или большую толпу посетителей, подавляющее большинство которых уйдут с сайта сразу. В первом случае конверсия может быть высокой, во втором низкой, но и стоить первый вариант будет дороже. Поэтому я не сторонник «меряться» конверсиями, более важный показатель – средняя стоимость привлеченного заказа (Cost per Order). Он позволяет объективно сравнить экономики двух интернет-магазинов в первом приближении. Воронку продаж можно также рассматривать как последовательность микрошагов из целевых действий:
1. Сделал хотя бы один клик после перехода (non-bounced visitor).
2. Добавил товар в корзину.
3. Нажал кнопку «оформить заказ» (checkout).
4. Оформил заказ.
Оптимизируя каждый шаг, можно увеличить число посетителей, которые доходят до конца воронки.
Анализ мерчандайзинга – это самое лучшее, что я узнал о внутренней веб-аналитике, когда изучал систему Omniture (ныне Adobe) SiteCatalyst. Анализ мерчандайзинга – это способ оценки эффективности виртуальных полок интернет-магазина. Сайт интернет-магазина включает в себя несколько типов страниц: главная, поиск, страница категории товаров, страница информации о товаре, корзина, шаги заказа и личный кабинет пользователя. На каждом типе страниц размещаются блоки товаров (рис. 12.2) – например, горизонтальная линия из пяти ротируемых товаров или большой блок списка товаров на страницах категории. В любом товарном блоке товар подается со следующими атрибутами: картинка, сниппет с небольшой информацией, цена, название товара, кнопка добавления в корзину или быстрого заказа. Что можно делать с дизайном подачи товара в блоке? Можно увеличить картинку, убрать какие-то элементы. А вот посчитать, что изменилось в метриках, можно с помощью анализа мерчандайзинга, где аналогом обычной полки в магазине будет блок товаров в интернет-магазине.

Рис. 12.2.Пример мерчандайзинга сайта интернет-магазина
Сам анализ работает следующим образом: все ссылки на товары (картинки, названия, кнопка добавления в корзину) помечаются специальными невидимыми тегами, где могут быть указаны тип страницы (главная, поиск и другие), название блока (горизонтальный, листинг), тип ссылки (картинка, название, кнопка добавления в корзину). Для каждого клика на таком блоке система запоминает, на каком товаре в каком блоке какой пользователь кликнул. Затем система в течение заранее установленного времени (например, 24 часа) следит за пользователем, что он будет делать с этим товаром после клика. Если пользователь добавил его в корзину или заказал, то эта метрика будет приписана к тому невидимому тегу, который был при клике. На выходе вы можете получить следующую статистику (табл. 12.1).
Таблица 12.1.Расчет эффективности мерчандайзинга

Обычно я выгружаю такую статистику в Excel, разбиваю тег на три поля (тип страницы, тип блока и тип ссылки) и получаю возможность легко решать следующий круг задач:
• Каков вклад в продажи каждого типа страницы? Например, 15 лет назад я вычислил, что страница поиска Ozon.ru дает половину от всех добавлений в корзину на сайте.
• Каков вклад рекомендательных блоков в продажи? На момент моего ухода из Ozon.ru система рекомендаций обеспечивала около 38 % всех добавлений в корзину.
• Откуда чаще покупают – после клика на картинке товара или на его названии? Тогда я выяснил, что чаще кликают на изображении, но названия товаров дают больше продаж.
Когда аналитик может это считать, у компании появляется неограниченное поле для экспериментов «а что, если»: увеличить картинки товаров, убрать картинки из поиска, поменять местами блоки товаров, изменить алгоритм рекомендаций в блоке товаров. Если у вас есть метрики мерчандайзинга, появляется гораздо больше возможностей для модификации сайта.
Напишу про некоторые нюансы этого типа анализа. Во-первых, там есть такая же проблема реатрибуции тегов, как и в рекламе: пользователь через поиск на сайте кликнул на товаре, через некоторое время он кликнул на том же товаре в блоке рекомендаций и купил его. К чему атрибуцировать товар – к странице поиска или блоку рекомендаций на сайте? Есть две стратегии: выиграл первый и выиграл последний. В первом случае этот заказ получит страница поиска, во втором – блок рекомендаций. Однозначного ответа на вопрос, какая стратегия лучше, нет. Я лично предпочитаю вариант «выиграл первый». Во-вторых, вычисления для анализа мерчандайзинга намного более затратны по сравнению с анализом рекламы. Из-за этого Omniture SiteCatalyst отказался поднимать время слежения за действиями пользователя с 24 часов до 7 дней, и мне пришлось пользоваться метрикой добавления в корзину, а не заказа, потому что в течение двадцати четырех часов после первого визита на сайт человек, как правило, не делает заказ, но успевает положить товар в корзину. Обращайте внимание, как вендоры веб-аналитики работают с мерчандайзингом: у Яндекс. Метрики такого нет и не планируется, у Google Analytics есть Enhanced Ecommerce, у Adobe Analytics есть анализ мерчандайзинга [114]. Я изучал документацию по внедрению двух последних систем и могу сказать, что в Adobe Analytics это сделано намного лучше, чем в Google Analytics. Я сам заимствовал эту идею и написал свой алгоритм расчета, который используется и по сей день компанией Retail Rocket для вычисления эффективности рекомендаций на сайтах клиентов.
Карта кликов на странице – интересный инструмент, но ее нужно очень серьезно настраивать, если работа идет с динамическими блоками, когда товары там ротируются. Я обычно старался заменять ее на анализ мерчандайзинга, а саму карту рисовать в редакторе. Это позволяло мне сделать усредненную карту кликов для страницы товара, когда самих товаров около 500 тысяч. Никакая карта кликов сама по себе с этим не справится, а анализ мерчандайзинга может.
Еще один полезный инструмент – «видеозапись» действий пользователя. Его умеет делать Яндекс. Метрика, сам инструмент называется вебвизор. Он сохраняет все действия небольшой части пользователей, включая движения мыши. Потом вы можете просмотреть такие записи в интерфейсе программы. Это напомнило мне книгу Пако Андерхилла «Как заставить их покупать». В этой книге автор рассказывает, как он расставляет огромное количество камер в магазинах клиентов, сутками смотрит видеозаписи, дает рекомендации, как изменить пространство магазина, чтобы больший процент посетителей совершили покупку. Точно так же можно использовать и вебвизор. К сожалению, инструмент недооценен либо по причине слабой информированности, либо из-за неудобства в использовании. Этот способ – хорошая альтернатива дорогим системам юзабилити, например трекерам глаз.
Читать дальшеИнтервал:
Закладка: