Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform
- Название:Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform
- Автор:
- Жанр:
- Издательство:Петрополис
- Год:2001
- Город:Санкт-Петербург
- ISBN:5-94656-025-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform краткое содержание
Книга "Введение в QNX/Neutrino 2» откроет перед вами в мельчайших подробностях все секреты ОСРВ нового поколения от компании QNX Software Systems Ltd (QSSL) — QNX/Neutrino 2. Книга написана в непринужденной манере, легким для чтения и понимания стилем, и поможет любому, от начинающих программистов до опытных системотехников, получить необходимые начальные знания для проектирования надежных систем реального времени, от встраиваемых управляющих приложений до распределенных сетевых вычислительных систем
В книге подробно описаны основные составляющие ОС QNX/Neutrino и их взаимосвязи. В частности, уделено особое внимание следующим темам:
• обмен сообщениями: принципы функционирования и основы применения;
• процессы и потоки: базовые концепции, предостережения и рекомендации;
• таймеры: организация периодических событий в программах;
• администраторы ресурсов: все, что относится к программированию драйверов устройств;
• прерывания: рекомендации по эффективной обработке.
В книге представлено множество проверенных примеров кода, подробных разъяснений и рисунков, которые помогут вам детально вникнуть в и излагаемый материал. Примеры кода и обновления к ним также можно найти на веб-сайте автора данной книги, www.parse.com.
Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Каково назначение флага data_ready ? Он служит для двух целей:
• Он является флагом состояния — посредником между «потребителем» и «производителем», указывающим на состояние системы. Если флаг установлен в состояние 1, это означает, что данные доступны для обработки; если этот флаг установлено в состояние 0, это означает, что данных нет, и поток-потребитель должен быть заблокирован.
• Он выполняет функцию «места, где происходит синхронизация со ждущей блокировкой». Более формально говоря, адрес переменной data_ready используется как уникальный идентификатор объекта, по которому осуществляется ждущая блокировка. Мы запросто могли бы применить « (void*)12345
» вместо « &data_ready
» — библиотеке ждущих блокировок все равно, что это за идентификатор, лишь бы он был уникален и корректно использовался. Использование же в качестве идентификатора адреса переменной есть надежный способ сгенерировать уникальный номер, поскольку не бывает же двух переменных с одинаковым адресом!
• К обсуждению различий между функциями pthread_sleepon_signal() и pthread_sleepon_broadcast() мы еще вернемся в разговоре об условных переменных.
Условные переменные
Условные переменные (или «condvars») очень похожи на ждущие блокировки, которые мы рассматривали выше. В действительности, ждущие блокировки — это надстройка над механизмом условных переменных, и именно поэтому в таблице, иллюстрировавшей использование ждущих блокировок, у нас встречалось состояние CONDVAR. Функция pthread_cond_wait() точно так же освобождает мутекс, ждет, а затем повторно блокирует мутекс, аналогично функции pthread_sleepon_wait() .
Давайте опустим вступление и обратимся к нашему примеру о «производителе» и «потребителе» из раздела о ждущих блокировках, но вместо ждущих блокировок будем использовать условные переменные. А затем уже обсудим вызовы.
/*
* cp1.c
*/
#include
#include
int data_ready = 0;
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t condvar = PTHREAD_COND_INITIALIZER;
void* consumer(void *notused){
printf("Это поток-потребитель...\n");
while (1) {
pthread_mutex_lock(&mutex);
while (!data_ready) {
pthread_cond_wait(&condvar, &mutex);
}
// Обработать данные
printf("Потребитель: получил данные от производителя\n");
data_ready = 0;
pthread_cond_signal(&condvar);
pthread_mutex_unlock(&mutex);
}
}
void* producer (void *notused) {
printf("Это поток-производитель...\n");
while (1) {
// Получить данные от оборудования
// (мы имитируем это при помощи sleep(1))
sleep(1);
printf("Производитель: получил данные от h/w\n");
pthread_mutex_lock(&mutex);
while (data_ready) {
pthread_cond_wait(&condvar, &mutex);
}
data_ready = 1;
pthread_cond_signal(&condvar);
pthread_mutex_unlock(&mutex);
}
}
main() {
printf(
"Начало примера с производителем и потребителем...\n");
// Создать поток-производитель и поток-потребитель
pthread_create(NULL, NULL, producer, NULL);
pthread_create(NULL, NULL, consumer, NULL);
// Дать потокам немного повыполняться
sleep(20);
}
Этот пример в значительной степени похож на программу с применением ждущей блокировки, с небольшими отличиями (мы добавили несколько вызовов printf() , а также функцию main() , чтобы программа могла работать!) Первое отличие, которое бросается в глаза, — здесь использован новый тип данных, pthread_cond_t
. Это просто декларация для условной переменной; мы назвали нашу условную переменную condvar .
Следующее, что видно из примера, — это то, что структура «потребителя» идентична таковой в предыдущем примере с ждущей блокировкой. Мы заменили функции pthread_sleepon_lock() и pthread_sleepon_unlock() на стандартные мутекс-ориентированные версии ( pthread_mutex_lock() и pthread_mutex_unlock() ). Функция pthread_sleepon_wait() была заменена на функцию pthread_cond_wait() .
Основное различие здесь состоит в том, что библиотека ждущих блокировок имеет скрытый внутренний мутекс, а при использовании условных переменных мутекс передается явно. Последний способ дает нам больше гибкости.
И, наконец, обратите внимание на то, что мы использовали функцию pthread_cond_signal() вместо функции pthread_sleepon_signal() (опять же, с явной передачей мутекса).
В разделе о ждущих блокировках мы обещали обсудить различие между функциями pthread_sleepon_broadcast() и pthread_sleepon_signal() . Заодно поговорим и о различии между двумя аналогичными функциями, имеющими отношение к условным переменным: pthread_cond_signal() и pthread_cond_broadcast() .
В двух словах, функция в варианте «signal» разблокирует только один поток. Например, если бы несколько потоков находилось в ожидании по функции «wait», и некий поток вызвал бы функцию pthread*_signal() , то был бы разблокирован только один из ждущих потоков. Который из них? Тот, у которого наивысший приоритет. Если имеется два или более потоков с одинаковым приоритетом, порядок «пробуждения» будет не определен. Применение же варианта pthread*_broadcast() приведет к тому что будут разблокированы все ожидающие потоки.
Разблокировать все потоки может показаться излишним. Но с другой стороны, разблокировать только один (причем случайный поток тоже не совсем корректно.
Поэтому мы должны думать, где имеет смысл использовать какой вариант. Очевидно, что если у вас только один ждущий поток, как у нас и было во всех вариантах «потребителя», функция pthread*_signal() прекрасно справится — будет разблокирован один поток, и как раз тот, который нужно (потому что других просто нет).
В ситуации с несколькими потоками в первую очередь следует выяснить: а почему они ждут? Обычно на этот вопрос есть два ответа:
• все потоки рассматриваются как эквивалентные и реально образуют пул доступных потоков, готовых к обработке некоторого запроса;
• все потоки являются уникальными, и каждый из них ждет соблюдения своего специфического условия.
В первом случае мы можем представить себе, что код всех потоков имеет примерно следующий вид:
/*
* cv1.c
*/
#include
#include
pthread_mutex_t mutex_data = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cv_data = PTHREAD_COND_INITIALIZER;
int data;
thread1() {
for (;;) {
pthread_mutex_lock(&mutex_data);
while (data == 0) {
pthread_cond_wait(&cv_data, &mutex_data);
}
// Сделать что-нибудь
pthread_mutex_unlock(&mutex_data);
}
}
В этом случае абсолютно неважно, который именно из потоков получит данные — главное, чтобы хотя бы один сделал это и произвел над этими данными необходимые действия.
Читать дальшеИнтервал:
Закладка: