Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform

Тут можно читать онлайн Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-osnet, издательство Петрополис, год 2001. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform
  • Автор:
  • Жанр:
  • Издательство:
    Петрополис
  • Год:
    2001
  • Город:
    Санкт-Петербург
  • ISBN:
    5-94656-025-9
  • Рейтинг:
    3.67/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform краткое содержание

Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform - описание и краткое содержание, автор Роб Кёртен, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга "Введение в QNX/Neutrino 2» откроет перед вами в мельчайших подробностях все секреты ОСРВ нового поколения от компании QNX Software Systems Ltd (QSSL) — QNX/Neutrino 2. Книга написана в непринужденной манере, легким для чтения и понимания стилем, и поможет любому, от начинающих программистов до опытных системотехников, получить необходимые начальные знания для проектирования надежных систем реального времени, от встраиваемых управляющих приложений до распределенных сетевых вычислительных систем

В книге подробно описаны основные составляющие ОС QNX/Neutrino и их взаимосвязи. В частности, уделено особое внимание следующим темам:

• обмен сообщениями: принципы функционирования и основы применения;

• процессы и потоки: базовые концепции, предостережения и рекомендации;

• таймеры: организация периодических событий в программах;

• администраторы ресурсов: все, что относится к программированию драйверов устройств;

• прерывания: рекомендации по эффективной обработке.

В книге представлено множество проверенных примеров кода, подробных разъяснений и рисунков, которые помогут вам детально вникнуть в и излагаемый материал. Примеры кода и обновления к ним также можно найти на веб-сайте автора данной книги, www.parse.com.

Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform - читать онлайн бесплатно полную версию (весь текст целиком)

Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform - читать книгу онлайн бесплатно, автор Роб Кёртен
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Функции работы с пулами потоков

Теперь, когда мы достаточно хорошо владеем методикой управления числом потоков в пуле, давайте обратимся к другим элементам атрибутной записи пула потоков:

// Функции и дескриптор пула потоков

THREAD_POOL_HANDLE_T *handlе;

THREAD_POOL_PARAM_T *(*block_func)(

THREAD_POOL_PARAM_T *ctp);

void (*unblock_func)(THREAD_POOL_PARAM_T *ctp);

int (*handler_func)(THREAD_POOL_PARAM_T *ctp);

THREAD_POOL_PARAM_T *(*context_alloc)(

THREAD_POOL_HANDLE_T *handle);

void (*context_free)(THREAD_POOL_PARAM_T *ctp);

Повторно обратимся к рисунку «Жизненный цикл пула потоков». Из рисунка видно, что при создании потока каждый раз вызывается функция context_alloc() . (Аналогично, при уничтожении потока вызывается функция context_tree() ). Элемент атрибутной записи с именем handler передается функции context_alloc() в качестве ее единственного параметра. Функция context_alloc() ответственна за индивидуальные настройки потока и возвращает указатель на контекст (списках параметров называемый ctp ). Заметьте, что содержание этого указателя — исключительно ваша забота; библиотеке абсолютно все равно, что вы в него поместите.

Теперь, когда контекст создан функцией context_alloc() , вызывается функция block_func() для перевода потока в режим блокирования. Заметьте, что функция block_func() получает на вход результат работы функции context_alloc() . После того как функция block_func() разблокируется, она возвращает указатель на контекст, который библиотека передает функции handler_func() . Функция handler_func() отвечает за выполнение «работы» — например, в типовом варианте именно она обрабатывает сообщение от клиента. На данный момент принято, что функция handler_func() должна возвращать нуль — ненулевые значения зарезервированы QSSL для будущего функционального расширения. Функция unblock_func() также в настоящее время зарезервирована, поэтому просто оставьте там NULL.

Возможно, ситуацию немного прояснит приведенный ниже пример псевдокода (он основан все на том же рисунке «Жизненный цикл потока в пуле потоков»):

FOREVER DO

IF (#threads < lo_water) THEN

IF (#threads < maximum) THEN

create new thread

context = (*context_alloc)(handle);

ENDIF

ENDIF

retval = (*block_func)(context);

(*handler_func)(retval);

IF (#threads > hi_water) THEN

(*context_free)(context)

kill thread

ENDIF

DONE

Отметим, что приведенная выше программа излишне упрощена. Ее назначение состоит только в том, чтобы продемонстрировать вам поток данных по параметрам ctp и handler и дать вам некоторое представление об алгоритмах, которые обычно применяются для управления числом потоков.

Диспетчеризация и реальный мир

До настоящего момента мы обсуждали дисциплины диспетчеризации и состояния потоков, но практически ничего не сказали относительно того, почему и когда происходит собственно перепланирование. Существует распространенное заблуждение, что перепланирование «просто случается», безо всяких реальных причин. И в общем-то, для проектирования это довольно полезная абстракция! Однако, очень важно понимать, почему происходит перепланирование. Вспомним рисунок «Схема алгоритма диспетчеризации» (в разделе «Роль ядра»).

Перепланирование может иметь только три причины:

• аппаратное прерывание;

• системный вызов;

• сбой (исключение).

Перепланирование по аппаратному прерыванию

Перепланирование из-за аппаратного прерывания можно разделить на две категории:

• по прерыванию от таймеров;

• по прерыванию от других аппаратных средств.

Часы реального времени генерируют периодические прерывания для ядра, организуя перепланирование во времени.

Например, если вы производите вызов sleep(10) , часы реального времени сгенерируют некоторое число прерываний; по каждому прерыванию ядро увеличивает значение системных часов. Когда системные часы покажут, что 10 секунд истекли, ядро перепланирует ваш поток, переведя его в состояние готовности (READY). (Мы рассмотрим этот вопрос более подробно в главе «Часы, таймеры и периодические уведомления»).

Другие потоки могут ожидать аппаратные прерывания от внешних устройств, таких как последовательный порт, жесткий диск или аудио платы. В этом случае они блокируются в ядре, ожидающем аппаратное прерывание. Поток будет переупорядочен ядром только после того, как ядро сгенерирует «событие».

Перепланирование по системным вызовам

Если поток делает системный вызов, перепланирование выполняется немедленно и может рассматриваться как асинхронное в отношении прерываний таймера и других прерываний.

Например, выше мы приводили пример вызова функции sleep(10) . Это библиотечная функция языка Си, в конечном счете она транслируется в системный вызов. В тот же самый момент ядро приняло решение о перепланировании, чтобы удалить ваш поток из очереди готовности по соответствующему приоритету и поставить на выполнение другой поток, находящийся в состоянии готовности (READY).

Системных вызов, вызывающи процесс обязательного перепланирования, очень много. Большинство их них достаточно очевидны. Перечислим некоторые из них:

• функции таймера (например, sleep() );

• функции обмена сообщениями (например, MsgSendv() );

• примитивы работы с потоками (например, pthread_cancel() или pthread_join() ).

Перепланирование по исключительным ситуациям

Последняя из вышеперечисленных причин перепланирования — это сбой процессора (CPU fault), который является исключительной ситуацией (exception) — чем-то средним между аппаратным прерыванием и системным вызовом. Исключительные ситуации асинхронны в отношении ядра (подобно прерыванию), но синхронны с вызывающими их пользовательскими программами (подобно вызову ядра — например, такая исключительная ситуация как деление на ноль). Все рассуждения, относящиеся к перепланированию по прерываниям от аппаратных средств и по системным вызовам, относятся и к исключительным ситуациям тоже.

Резюме

Операционная система QNX/Neutrino предлагает богатые возможности диспетчеризации потоков — минимальных диспетчеризуемых единиц. Процесс в QNX/Neutrino определяется как минимальная единица, способная обладать ресурсами (например, областями памяти), и может содержать один или более потоков.

С потоками можно применять любые из следующих методов синхронизации:

• мутексы (mutexes) — владеть мутексом в заданный момент времени может только один поток;

• семафоры (semaphores) — владеть семафором позволяется некоторому фиксированному числу потоков;

• ждущие блокировки (sleepons) — позволяют нескольким потокам блокироваться на нескольких объектах, динамически назначая блокированным потокам соответствующие условные переменные;

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Роб Кёртен читать все книги автора по порядку

Роб Кёртен - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform отзывы


Отзывы читателей о книге Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform, автор: Роб Кёртен. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x