Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform
- Название:Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform
- Автор:
- Жанр:
- Издательство:Петрополис
- Год:2001
- Город:Санкт-Петербург
- ISBN:5-94656-025-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform краткое содержание
Книга "Введение в QNX/Neutrino 2» откроет перед вами в мельчайших подробностях все секреты ОСРВ нового поколения от компании QNX Software Systems Ltd (QSSL) — QNX/Neutrino 2. Книга написана в непринужденной манере, легким для чтения и понимания стилем, и поможет любому, от начинающих программистов до опытных системотехников, получить необходимые начальные знания для проектирования надежных систем реального времени, от встраиваемых управляющих приложений до распределенных сетевых вычислительных систем
В книге подробно описаны основные составляющие ОС QNX/Neutrino и их взаимосвязи. В частности, уделено особое внимание следующим темам:
• обмен сообщениями: принципы функционирования и основы применения;
• процессы и потоки: базовые концепции, предостережения и рекомендации;
• таймеры: организация периодических событий в программах;
• администраторы ресурсов: все, что относится к программированию драйверов устройств;
• прерывания: рекомендации по эффективной обработке.
В книге представлено множество проверенных примеров кода, подробных разъяснений и рисунков, которые помогут вам детально вникнуть в и излагаемый материал. Примеры кода и обновления к ним также можно найти на веб-сайте автора данной книги, www.parse.com.
Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Теперь, когда мы достаточно хорошо владеем методикой управления числом потоков в пуле, давайте обратимся к другим элементам атрибутной записи пула потоков:
// Функции и дескриптор пула потоков
THREAD_POOL_HANDLE_T *handlе;
THREAD_POOL_PARAM_T *(*block_func)(
THREAD_POOL_PARAM_T *ctp);
void (*unblock_func)(THREAD_POOL_PARAM_T *ctp);
int (*handler_func)(THREAD_POOL_PARAM_T *ctp);
THREAD_POOL_PARAM_T *(*context_alloc)(
THREAD_POOL_HANDLE_T *handle);
void (*context_free)(THREAD_POOL_PARAM_T *ctp);
Повторно обратимся к рисунку «Жизненный цикл пула потоков». Из рисунка видно, что при создании потока каждый раз вызывается функция context_alloc() . (Аналогично, при уничтожении потока вызывается функция context_tree() ). Элемент атрибутной записи с именем handler передается функции context_alloc() в качестве ее единственного параметра. Функция context_alloc() ответственна за индивидуальные настройки потока и возвращает указатель на контекст (списках параметров называемый ctp ). Заметьте, что содержание этого указателя — исключительно ваша забота; библиотеке абсолютно все равно, что вы в него поместите.
Теперь, когда контекст создан функцией context_alloc() , вызывается функция block_func() для перевода потока в режим блокирования. Заметьте, что функция block_func() получает на вход результат работы функции context_alloc() . После того как функция block_func() разблокируется, она возвращает указатель на контекст, который библиотека передает функции handler_func() . Функция handler_func() отвечает за выполнение «работы» — например, в типовом варианте именно она обрабатывает сообщение от клиента. На данный момент принято, что функция handler_func() должна возвращать нуль — ненулевые значения зарезервированы QSSL для будущего функционального расширения. Функция unblock_func() также в настоящее время зарезервирована, поэтому просто оставьте там NULL.
Возможно, ситуацию немного прояснит приведенный ниже пример псевдокода (он основан все на том же рисунке «Жизненный цикл потока в пуле потоков»):
FOREVER DO
IF (#threads < lo_water) THEN
IF (#threads < maximum) THEN
create new thread
context = (*context_alloc)(handle);
ENDIF
ENDIF
retval = (*block_func)(context);
(*handler_func)(retval);
IF (#threads > hi_water) THEN
(*context_free)(context)
kill thread
ENDIF
DONE
Отметим, что приведенная выше программа излишне упрощена. Ее назначение состоит только в том, чтобы продемонстрировать вам поток данных по параметрам ctp и handler и дать вам некоторое представление об алгоритмах, которые обычно применяются для управления числом потоков.
Диспетчеризация и реальный мир
До настоящего момента мы обсуждали дисциплины диспетчеризации и состояния потоков, но практически ничего не сказали относительно того, почему и когда происходит собственно перепланирование. Существует распространенное заблуждение, что перепланирование «просто случается», безо всяких реальных причин. И в общем-то, для проектирования это довольно полезная абстракция! Однако, очень важно понимать, почему происходит перепланирование. Вспомним рисунок «Схема алгоритма диспетчеризации» (в разделе «Роль ядра»).
Перепланирование может иметь только три причины:
• аппаратное прерывание;
• системный вызов;
• сбой (исключение).
Перепланирование по аппаратному прерыванию
Перепланирование из-за аппаратного прерывания можно разделить на две категории:
• по прерыванию от таймеров;
• по прерыванию от других аппаратных средств.
Часы реального времени генерируют периодические прерывания для ядра, организуя перепланирование во времени.
Например, если вы производите вызов sleep(10)
, часы реального времени сгенерируют некоторое число прерываний; по каждому прерыванию ядро увеличивает значение системных часов. Когда системные часы покажут, что 10 секунд истекли, ядро перепланирует ваш поток, переведя его в состояние готовности (READY). (Мы рассмотрим этот вопрос более подробно в главе «Часы, таймеры и периодические уведомления»).
Другие потоки могут ожидать аппаратные прерывания от внешних устройств, таких как последовательный порт, жесткий диск или аудио платы. В этом случае они блокируются в ядре, ожидающем аппаратное прерывание. Поток будет переупорядочен ядром только после того, как ядро сгенерирует «событие».
Перепланирование по системным вызовам
Если поток делает системный вызов, перепланирование выполняется немедленно и может рассматриваться как асинхронное в отношении прерываний таймера и других прерываний.
Например, выше мы приводили пример вызова функции sleep(10)
. Это библиотечная функция языка Си, в конечном счете она транслируется в системный вызов. В тот же самый момент ядро приняло решение о перепланировании, чтобы удалить ваш поток из очереди готовности по соответствующему приоритету и поставить на выполнение другой поток, находящийся в состоянии готовности (READY).
Системных вызов, вызывающи процесс обязательного перепланирования, очень много. Большинство их них достаточно очевидны. Перечислим некоторые из них:
• функции таймера (например, sleep() );
• функции обмена сообщениями (например, MsgSendv() );
• примитивы работы с потоками (например, pthread_cancel() или pthread_join() ).
Перепланирование по исключительным ситуациям
Последняя из вышеперечисленных причин перепланирования — это сбой процессора (CPU fault), который является исключительной ситуацией (exception) — чем-то средним между аппаратным прерыванием и системным вызовом. Исключительные ситуации асинхронны в отношении ядра (подобно прерыванию), но синхронны с вызывающими их пользовательскими программами (подобно вызову ядра — например, такая исключительная ситуация как деление на ноль). Все рассуждения, относящиеся к перепланированию по прерываниям от аппаратных средств и по системным вызовам, относятся и к исключительным ситуациям тоже.
Резюме
Операционная система QNX/Neutrino предлагает богатые возможности диспетчеризации потоков — минимальных диспетчеризуемых единиц. Процесс в QNX/Neutrino определяется как минимальная единица, способная обладать ресурсами (например, областями памяти), и может содержать один или более потоков.
С потоками можно применять любые из следующих методов синхронизации:
• мутексы (mutexes) — владеть мутексом в заданный момент времени может только один поток;
• семафоры (semaphores) — владеть семафором позволяется некоторому фиксированному числу потоков;
• ждущие блокировки (sleepons) — позволяют нескольким потокам блокироваться на нескольких объектах, динамически назначая блокированным потокам соответствующие условные переменные;
Читать дальшеИнтервал:
Закладка: