Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform
- Название:Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform
- Автор:
- Жанр:
- Издательство:Петрополис
- Год:2001
- Город:Санкт-Петербург
- ISBN:5-94656-025-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform краткое содержание
Книга "Введение в QNX/Neutrino 2» откроет перед вами в мельчайших подробностях все секреты ОСРВ нового поколения от компании QNX Software Systems Ltd (QSSL) — QNX/Neutrino 2. Книга написана в непринужденной манере, легким для чтения и понимания стилем, и поможет любому, от начинающих программистов до опытных системотехников, получить необходимые начальные знания для проектирования надежных систем реального времени, от встраиваемых управляющих приложений до распределенных сетевых вычислительных систем
В книге подробно описаны основные составляющие ОС QNX/Neutrino и их взаимосвязи. В частности, уделено особое внимание следующим темам:
• обмен сообщениями: принципы функционирования и основы применения;
• процессы и потоки: базовые концепции, предостережения и рекомендации;
• таймеры: организация периодических событий в программах;
• администраторы ресурсов: все, что относится к программированию драйверов устройств;
• прерывания: рекомендации по эффективной обработке.
В книге представлено множество проверенных примеров кода, подробных разъяснений и рисунков, которые помогут вам детально вникнуть в и излагаемый материал. Примеры кода и обновления к ним также можно найти на веб-сайте автора данной книги, www.parse.com.
Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Не пытайтесь извлечь из значения идентификатора отправителя какой-либо конкретный смысл — он может измениться в будущих версиях операционной системы. Единственное, что нужно знать — что он уникален, то есть у вас никогда не будет двух различных клиентов с одним и тем же идентификатором отправителя (иначе ядро просто не сможет их различить, когда вы вызовете MsgReply() ).
Отметим также, что за исключением одного частного случая (с применением функции MsgDeliverEvent() , которую мы рассмотрим позже), после вызова функции MsgReply() соответствующий идентификатор отправителя перестает иметь смысл.
Таким образом, мы плавно переходим к функции MsgReply() .
Функция MsgReply() принимает в качестве параметров идентификатор отправителя, код возврата, указатель на сообщение и размер этого сообщения. Мы только что обсудили идентификатор отправителя — он уникально идентифицирует того, кому должно быть отправлено ответное сообщение. Код возврата указывает, какой код должна возвратить функция MsgSend() клиента. Наконец, указатель на сообщение и размер указывают на местоположение и размер (необязательного!) ответного сообщения, которое следует отправить.
Функция MsgReply() может показаться очень простой (и так оно и есть), но рассмотреть ее применение было бы полезно.
Однако, вы вовсе не обязаны обязательно ответить клиенту перед приемом новых сообщений от других клиентов с помощью функции MsgReceive() ! Это положение можно с успехом использовать в множестве различных сценариев.
В типовом драйвере устройства клиент может выдать запросом, который не будет обслужен в течение продолжительного времени. Например, клиент может запросить драйвер аналого-цифрового преобразователя (АЦП): «Сходи-ка принеси мне данные за следующие 45 секунд.» Драйвер АЦП не может себе позволить вывесить табличку «Закрыто» на целых 45 секунд, потому что другим клиентам тоже может срочно что-нибудь понадобиться — например, данные по другому каналу, информация о состоянии, и т.п.
В соответствии со своей архитектурой, драйвер АЦП просто поставит в очередь полученный от функции MsgReceive() идентификатор отправителя, осуществит запуск 45-секундного процесса накопления данных и снова вернется к обработке клиентских запросов. По истечении этого 45-секундного интервала, когда данные накоплены, драйвер АЦП сможет найти идентификатор отправителя, связанный с данным запросом, и ответить нужному клиенту.
Вам также может понадобиться задержаться с ответом клиенту в случае модели «сервер/субсервер» (то есть некоторые клиенты — на самом деле субсерверы). Вы можете просто запомнить идентификаторы ищущих работу субсерверов и сохранить их до поры до времени. Когда работа для субсерверов появится, тогда и только тогда вы ответите субсерверу, указав, что именно он должен сделать.
Когда дело наконец доходит до ответа клиенту, вы совершенно не обязаны передавать ему какие-либо данные. Это может использоваться в двух случаях.
Вы можете отправить клиенту ответ без данных, если единственная цель ответа — разблокировать клиента. Скажем, клиент желает быть блокированным до некоторого события, а до какого именно — ему знать не обязательно. В этом случае функции MsgReply() не потребуется никаких данных, достаточно будет только идентификатора отправителя:
MsgReply(rcvid, EOK, NULL, 0);
Такой вызов разблокирует клиента (но не передаст ему никаких данных) и возвратит код EOK («успешное завершение»).
Как вариант, вы можете при желании возвратить клиенту код ошибки. Вы не сможете сделать это с помощью функции MsgReply() , вместо нее для этого используется функция MsgError() :
MsgError(rcvid, EROFS);
В приведенном выше примере сервер обнаруживает, что клиент пытается записать данные в файловую систему, предназначенную только для чтения, и вместо данных возвращает клиенту код ошибки ( errno ) EROFS.
Еще одним поводом ответить клиенту без данных (и соответствующие вызовы мы вскоре рассмотрим) может быть то, что данные уже переданы ранее (с помощью функции MsgWrite() ), и больше никаких данных нет.
Почему применяются два типа вызовов? Они немного различны. В то время как обе функции MsgError() и MsgReply() разблокируют клиента, функция MsgError() при этом не передаст никаких данных, заставит функцию MsgSend() клиента возвратить -1 и установит переменную errno на стороне клиента в значение, переданное функции MsgError() в качестве второго аргумента.
С другой стороны, функция MsgReply() может передавать данные (как видно из ее третьего и четвертого параметров) и заставляет функцию MsgSend() клиента возвратить значение, переданное MsgReply() в качестве второго аргумента. Переменная errno клиента остается нетронутой.
В общем случае, если вам нужно только сообщить о результатах действия («прошло/не прошло»), лучше применять функцию MsgError() . Если бы вы возвращали данные, здесь была бы необходима функция MsgReply() . Обычно, когда вы возвращаете данные, вторым параметром функции MsgReply() будет положительное целое число, указывающее на число возвращаемых байт.
Ранее мы отметили, что для соединения с сервером функции ConnectAttach() необходимо указать дескриптор узла (Node Descriptor — ND), идентификатор процесса (process ID — PID), а также идентификатор канала (Channel ID — CHID). До настоящего момента мы не обсуждали, как именно клиент находит эту информацию.
Если один процесс создает другой процесс, тогда это просто — вызов создания процесса возвращает идентификатор вновь созданного процесса. Создающий процесс может либо передать собственные PID и CHID вновь созданному процессу в командной строке, либо вновь созданный процесс может вызвать функцию getppid() для получения идентификатора родительского процесса, и использовать некоторый «известный» идентификатор канала.
А что если у нас два совершенно чужих процесса? Это возможно, например, в том случае, если сервер создан некоей третьей стороной, а вашему приложению нужно уметь общаться с этим сервером. Реально мы должны найти ответ на вопрос: «Как сервер объявляет о своем местонахождении?»
Существует множество способов сделать это; мы рассмотрим только три из них, в порядке возрастания «элегантности»:
1. Открыть файла с известным именем и сохранить в нем ND/PID/CHID. Такой метод является традиционным для серверов UNIX, когда сервер открывает файл (например, /etc/httpd.pid
), записывает туда свой идентификатор процесса в виде строки ASCII и предполагают, что клиенты откроют этот файл прочитают из него идентификатор.
Интервал:
Закладка: