Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform
- Название:Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform
- Автор:
- Жанр:
- Издательство:Петрополис
- Год:2001
- Город:Санкт-Петербург
- ISBN:5-94656-025-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform краткое содержание
Книга "Введение в QNX/Neutrino 2» откроет перед вами в мельчайших подробностях все секреты ОСРВ нового поколения от компании QNX Software Systems Ltd (QSSL) — QNX/Neutrino 2. Книга написана в непринужденной манере, легким для чтения и понимания стилем, и поможет любому, от начинающих программистов до опытных системотехников, получить необходимые начальные знания для проектирования надежных систем реального времени, от встраиваемых управляющих приложений до распределенных сетевых вычислительных систем
В книге подробно описаны основные составляющие ОС QNX/Neutrino и их взаимосвязи. В частности, уделено особое внимание следующим темам:
• обмен сообщениями: принципы функционирования и основы применения;
• процессы и потоки: базовые концепции, предостережения и рекомендации;
• таймеры: организация периодических событий в программах;
• администраторы ресурсов: все, что относится к программированию драйверов устройств;
• прерывания: рекомендации по эффективной обработке.
В книге представлено множество проверенных примеров кода, подробных разъяснений и рисунков, которые помогут вам детально вникнуть в и излагаемый материал. Примеры кода и обновления к ним также можно найти на веб-сайте автора данной книги, www.parse.com.
Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
К счастью, эта проблема довольно просто обходится, причем даже с дополнительным выигрышем.
Здесь будут особенно полезны функции MsgRead() и MsgWrite() . Важно при этом помнить, что клиент блокирован — это означает, что он не собирается изменять данные, пока сервер их анализирует.
В многопоточном клиенте теоретически возможно, что в область данных заблокированного по серверу клиентского потока залезет другой поток. Такая ситуация рассматривается как некорректная (ошибка проектирования), поскольку серверный поток предполагает, что он имеет монопольный доступ к области данных клиента, пока тот заблокирован.
Функция MsgRead() описана так:
#include
int MsgRead(int rcvid, void *msg, int nbytes, int offset);
Функция MsgRead() позволяет Вашему серверу считать nbytes байт данных из адресного пространства заблокированного клиента, начиная со смещения offset от начала клиентского буфера, в буфер, указанный параметром msg . Сервер не блокируется, а клиент не разблокируется. Функция MsgRead() возвращает число байтов, которые были фактически считаны, или возвращает -1, если произошла ошибка.
Итак, давайте подумаем, как бы мы использовали эти возможности в нашем примере с вызовом write() . Библиотечная функция write() создает сообщение с заголовком и посылает его серверу файловой системы fs-qnx4
. Сервер принимает небольшую часть сообщения с помощью MsgReceive() , анализирует его и принимает решение, где разместить остальную часть сообщения — например, где-то в уже выделенном буфере дискового кэша.
Давайте рассмотрим пример.

Пример отправки сообщения серверу fs-qnx4 с непрерывным представлением данных.
Итак, клиент решил переслать файловой системе 4Кб данных. (Отметьте для себя, что Си-библиотека добавила к сообщению перед данными небольшой заголовок — чтобы потом можно было узнать, к какому типу принадлежал этот запрос. Мы еще вернемся к этому вопросу, когда будем говорить о составных сообщениях, а также — еще более детально — когда будем анализировать работу администраторов ресурсов.) Файловая система считывает только те данные (заголовок), которые будут ей необходимы для того, чтобы выяснить тип принятого сообщения:
// Часть заголовков, вымышлены для примера
struct _io_write {
uint16_t type;
uint16_t combine_len;
int32_t nbytes;
uint32_t xtype;
};
typedef union {
uint16_t type;
struct _io_read io_read;
struct _io_write io_write;
...
} header_t;
header_t header; // Объявить заголовок
rcvid = MsgReceive(chid, &header, sizeof(header), NULL);
switch (header.type) {
...
case _IO_WRITE:
number_of_bytes = header.io_write.nbytes;
...
Теперь сервер fs-qnx4
знает, что в адресном пространстве клиента находится 4Кб данных (сообщение известило его об этом через элемент структуры nbytes ), и что эти данные надо передать в буфер кэша. Теперь сервер fs-qnx4
может сделать так:
MsgRead(rcvid, cache_buffer[index].data,
cache_buffer[index].size, sizeof(header.io_write));
Обратите внимание, что операции приема сообщения задано смещение sizeof(header.io_write)
— это сделано для того, чтобы пропустить заголовок, добавленный клиентской библиотекой. Мы предполагаем здесь, что cache_buffer[index].size
(размер буфера кэша) равен 4096 (или более) байт.
Для записи данных в адресное пространство клиента есть аналогичная функция:
#include
int MsgWrite(int rcvid, const void *msg, int nbytes,
int offset);
Применение функции MsgWrite() позволяет серверу записать данные в адресное пространство клиента, начиная со смещения offset байт от начала указанного клиентом приемного буфера. Эта функция наиболее полезна в случаях, где сервер ограничен в ресурсах, а клиент желает получить от него значительное количество информации.
Например, в системе сбора данных клиент может выделить 4-мегабайтный буфер и приказать драйверу собрать 4 мегабайта данных. Драйверу вовсе не обязательно держать под боком здоровенный буфер просто так, на случай если кто-то вдруг неожиданно запросит передачу большого массива данных.
Драйвер может иметь буфер размером 128Кб для обмена с аппаратурой посредством DMA, а сообщение пересылать в адресное пространство клиента по частям, используя функцию MsgWrite() (разумеется, каждый раз увеличивая смещение на 128Кб). Когда будет передан последний фрагмент, можно будет вызывать MsgReply() .

Передача нескольких фрагментов сообщения с помощью функции MsgWrite()
Отметим, что функция MsgWrite() позволяет вам записать различные компоненты данных в различные места, а затем либо просто разбудить клиента вызовом MsgReply() :
MsgReply(rcvid, EOK, NULL, 0);
либо сделать это после записи заголовка в начало клиентского буфера:
MsgReply(rcvid, EOK, &header, sizeof(header));
Это довольно изящный трюк для записи неизвестного количества данных, когда вы узнаете, сколько данных нужно было записать, только когда запись уже закончена. Главное — если вы будете использовать второй метод, с записью заголовка после записи данных, не забудьте зарезервировать место под заголовок в начале клиентского буфера!
Составные сообщения
До сих пор мы демонстрировали только обмен сообщениями, когда данные передаются из одного буфера в адресном пространстве клиента в другой буфер в адресном пространстве сервера (и наоборот — в случае ответа на сообщение).
При том, что данный подход вполне приемлем для большинства приложений, его применение далеко не всегда эффективно. Вспомните: наша функция write() из Си-библиотеки берет переданный ей буфер и добавляет в его начало небольшой заголовок. Используя то, что мы уже изучили ранее, вы могли бы ожидать, что реализация write() в Си-библиотеке может выглядеть примерно так (это не реальный код!):
ssize_t write(int fd, const void *buf, size_t nbytes) {
char *newbuf;
io_write_t *wptr;
int nwritten;
newbuf = malloc(nbytes + sizeof(io_write_t));
// Заполнить write_header
wptr = (io_write_t*)newbuf;
wptr->type = _IO_WRITE;
wptr->nbytes = nbytes;
// Сохранить данные от клиента
memcpy(newbuf + sizeof(io_write_t), buf, nbytes);
// Отправить сообщение серверу
nwritten =
MsgSend(fd, newbuf, nbytes + sizeof(io_write_t),
newbuf, sizeof(io_write_t));
free(newbuf);
return(nwritten);
}
Понимаете, что произошло? Несколько неприятных вещей:
• Функция write() теперь должна быть способна выделить память под буфер достаточно большого размера как для данных клиента (которые могут быть довольно значительными по объему), так и для заголовка. Размер заголовка не имеет значения — в этом случае он был равен 12 байтам.
Читать дальшеИнтервал:
Закладка: