Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform

Тут можно читать онлайн Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-osnet, издательство Петрополис, год 2001. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform
  • Автор:
  • Жанр:
  • Издательство:
    Петрополис
  • Год:
    2001
  • Город:
    Санкт-Петербург
  • ISBN:
    5-94656-025-9
  • Рейтинг:
    3.67/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform краткое содержание

Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform - описание и краткое содержание, автор Роб Кёртен, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга "Введение в QNX/Neutrino 2» откроет перед вами в мельчайших подробностях все секреты ОСРВ нового поколения от компании QNX Software Systems Ltd (QSSL) — QNX/Neutrino 2. Книга написана в непринужденной манере, легким для чтения и понимания стилем, и поможет любому, от начинающих программистов до опытных системотехников, получить необходимые начальные знания для проектирования надежных систем реального времени, от встраиваемых управляющих приложений до распределенных сетевых вычислительных систем

В книге подробно описаны основные составляющие ОС QNX/Neutrino и их взаимосвязи. В частности, уделено особое внимание следующим темам:

• обмен сообщениями: принципы функционирования и основы применения;

• процессы и потоки: базовые концепции, предостережения и рекомендации;

• таймеры: организация периодических событий в программах;

• администраторы ресурсов: все, что относится к программированию драйверов устройств;

• прерывания: рекомендации по эффективной обработке.

В книге представлено множество проверенных примеров кода, подробных разъяснений и рисунков, которые помогут вам детально вникнуть в и излагаемый материал. Примеры кода и обновления к ним также можно найти на веб-сайте автора данной книги, www.parse.com.

Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform - читать онлайн бесплатно полную версию (весь текст целиком)

Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform - читать книгу онлайн бесплатно, автор Роб Кёртен
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

// Обработать его

} else { // Это обычное сообщение

// Определить тип сообщения

// Обработать его

}

Что внутри импульса?

Итак, вы принимаете сообщение с нулевым идентификатором отправителя. Что у него внутри? Вот фрагмент заголовочного файла :

struct _pulse {

_uint16 type;

_uint16 subtype;

_int8 code;

_uint8 zero[3];

union sigval value;

_int32 scoid;

};

Элементы type и subtype равны нулю (это еще один признак того, что перед нами импульс); содержимое элементов code и value определяется отправителем. В общем случае элемент code будет указывать на причину, по которой был отправлен импульс, а параметр value будет содержать 32 бита данных, ассоциируемых с данным импульсом. Эти два поля и есть те самые 40 бит контента; другие поля пользователем не настраиваются.

Ядро резервирует отрицательные значения параметра code , оставляя 127 значений для программистов — для использования по своему усмотрению.

Элемент value в действительности является элементом типа union :

union sigval {

int sival_int;

void *sival_ptr;

};

Поэтому (в развитие примера с сервером, представленного выше) вы часто будете видеть программу, подобную этой:

#include

rcvid = MsgReceive(chid, ...

if (rcvid == 0) { // Импульс

// Определить тип импульса

switch (msg.pulse.code) {

case MY_PULSE_TIMER:

// Сработал один из наших таймеров,

// надо что-то делать...

break;

case MY_PULSE_HWINT:

// Импульс получен от обработчика прерывания.

// Надо заглянуть в поле «value»...

val = msg.pulse.value.sival_int;

// Сделать что-нибудь по этому поводу...

break;

case _PULSE_CODE_UNBLOCK:

// Это импульс от ядра, разблокирующий клиента

// Сделать что-нибудь по этому поводу...

break;

//и так далее...

}

} else { // Обычное сообщение

// Определить тип сообщения

// Обработать его

}

В этой программе предполагается, конечно, что вы описали структуру msg так, чтобы она содержала элемент « struct _pulse pulse; », и что определены константы MY_PULSE_TIMER и MY_PULSE_HWINT. Код импульса _PULSE_CODE_UNBLOCK — один из тех самых отрицательных кодов, зарезервированных для ядра, как это было упомянуто выше. Вы можете найти полный список этих кодов (а также краткое описание поля value ) в .

Функция MsgReceivePulse()

Функции MsgReceive() и MsgReceivev() могут принимать либо стандартное сообщение, либо импульс. Однако, возможны ситуации, когда вы пожелаете принимать только импульсы. Лучшим примером этого является ситуация с сервером, когда вы приняли запрос от клиента на выполнение чего-нибудь, но не можете выполнить этот запрос сразу (возможно, из-за длительной операции, связанной с аппаратными средствами). В таких случаях следует, как правило, настроить аппаратные средства (или таймер, или что-нибудь еще) на передачу вам импульса всякий раз, когда происходит некое значительное событие.

Если вы напишете ваш сервер по стандартной схеме «ждать сообщения в бесконечном цикле», вы можете оказаться в ситуации, когда один клиент посылает вам запрос, а потом, пока вы ожидаете импульса, который должен сигнализировать об отработке запроса, приходит запрос от другого клиента. Вообще говоря, это как раз то что нужно — в конце концов, мы хотели иметь способность одновременно обслуживать множество клиентов. Однако, у вас могут быть веские основания отказать клиенту в обслуживании — например, если обслуживание клиента слишком ресурсоемко, и надо ограничить численность одновременно обрабатываемой клиентуры.

В таком случае вам потребуется обеспечить возможность «выборочного» приема только импульсов. Тут-то и становится актуальной функция MsgReceivePulse() :

#include

int MsgReceivePulse(int chid, void *rmsg, int rbytes,

struct _msg_info *info);

Видно, что ее параметры те же, что и у функции MsgReceive() — идентификатор канала, буфер (и его размер), и параметр info — мы обсуждали его в параграфе «Кто послал сообщение?» Заметьте, что параметр info не применяется в импульсах. Вы можете спросить, почему он представлен в списке параметров. Ответ незамысловат: так было проще сделать. Просто передайте NULL!

Функция MgsReceivePulse() способна принимать только импульсы. Так, если бы у вас был канал с множеством потоков, блокированных на нем с помощью функции MsgReceivePulse() (и ни одного потока, блокированного на нем с помощью функции MsgReceive() ), и некий клиент попытался бы отправить вашему серверу сообщение, то этот клиент остался бы заблокированным по передаче (Send-blocked) до тех пор, пока какой-либо поток сервера не вызовет MsgReceive() . Тем временем функция MsgReceivePulse() будет спокойно принимать импульсы.

Единственное, что можно гарантировать при совместном применении функций MsgReceivePulse() и MsgReceive() , — что функция MsgReceivePulse() обеспечит прием исключительно импульсов. Функция MsgReceive() сможет принимать как импульсы, так и обычные сообщения! Это происходит потому, что применение функции MsgReceivePulse() зарезервировано специально для случаев, где нужно исключить получение сервером обычных сообщений.

Это немного вводит в замешательство. Так как функция MsgReceive() может принимать и обычные сообщения, и импульсы, а функция MsgReceivePulse() может принимать только импульсы, то как быть с сервером, в котором применяются обе функции? Общий ответ такой. У вас есть пул потоков, выполняющих MsgReceive() . Этот пул потоков (один или более потоков — это зависит от числа клиентов, которое вы хотели бы обслуживать одновременно) отвечает за обработку запросов от клиентов.

Поскольку вы пытаетесь управлять численностью потоков- обработчиков, и некоторым из этих потоков может понадобиться блокироваться в ожидании импульса (например, от оборудования или от другого потока), вы блокируете поток-обработчик при помощи функции MsgReceivePulse() . Функция MsgReceivePulse() принимает только импульсы, а значит, ее применение гарантирует, что пока вы ждете импульса, к вам ненароком не просочится никакой клиентский запрос.

Функция MsgDeliverEvent()

Как было упомянуто выше в параграфе «Иерархический принцип обмена», существуют ситуации, когда приходится нарушать естественное направление передач.

Такой случай возможен, когда у вас есть клиент, который посылает серверу сообщение и при этом не хочет блокироваться, а результат может быть доступен только через некоторое время. Конечно, вы могли бы частично решить эту проблему путем применения многопоточных клиентов, выделяя в клиенте отдельный поток для блокирующих вызовов сервера, но это не всегда с успехом работает в больших системах, поскольку при большом количестве серверов количество ждущих потоков было бы слишком велико. Но допустим, вы не хотите здесь использовать многопоточность, а вместо этого вам нужно, чтобы сервер ответил клиенту сразу, и чем-то вроде «Заказ принят; я скоро вернусь». Здесь, поскольку сервер ответил, клиент теперь свободен продолжать свою работу. После того как сервер отработает запрос клиента, ему потребуется как-то сказать клиенту «Проснись, вот твой заказ.» Очевидно, как мы это уже видели при анализе иерархического принципа обмена, сервер не должен передавать сообщения клиенту, потому что если клиент в это же время отправит сообщение серверу, это может вызывать взаимную блокировку. Так как же сервер может послать сообщение клиенту без нарушения иерархического принципа?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Роб Кёртен читать все книги автора по порядку

Роб Кёртен - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform отзывы


Отзывы читателей о книге Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform, автор: Роб Кёртен. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x