Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform
- Название:Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform
- Автор:
- Жанр:
- Издательство:Петрополис
- Год:2001
- Город:Санкт-Петербург
- ISBN:5-94656-025-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform краткое содержание
Книга "Введение в QNX/Neutrino 2» откроет перед вами в мельчайших подробностях все секреты ОСРВ нового поколения от компании QNX Software Systems Ltd (QSSL) — QNX/Neutrino 2. Книга написана в непринужденной манере, легким для чтения и понимания стилем, и поможет любому, от начинающих программистов до опытных системотехников, получить необходимые начальные знания для проектирования надежных систем реального времени, от встраиваемых управляющих приложений до распределенных сетевых вычислительных систем
В книге подробно описаны основные составляющие ОС QNX/Neutrino и их взаимосвязи. В частности, уделено особое внимание следующим темам:
• обмен сообщениями: принципы функционирования и основы применения;
• процессы и потоки: базовые концепции, предостережения и рекомендации;
• таймеры: организация периодических событий в программах;
• администраторы ресурсов: все, что относится к программированию драйверов устройств;
• прерывания: рекомендации по эффективной обработке.
В книге представлено множество проверенных примеров кода, подробных разъяснений и рисунков, которые помогут вам детально вникнуть в и излагаемый материал. Примеры кода и обновления к ним также можно найти на веб-сайте автора данной книги, www.parse.com.
Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
SIGEV_UNBLOCK_INIT(&event);
// Создать поток
pthread_create(&thread_id, NULL, long_thread, NULL);
// Установить тайм-аут 10 секунд
timeout = 10LL * SEC_NSEC;
TimerTimeout(CLOCK_REALTIME, _NTO_TIMEOUT_JOIN, &event,
&timeout, NULL);
rval = pthread_join(thread_id, NULL);
if (rval == ETIMEDOUT) {
printf("Истекли 10 секунд, поток %d все еще"
" выполняется!\n",
thread_id);
}
sleep(5);
TimerTimeout(СLOCK_REALTIME, _NTO_TIMEOUT_JOIN, &event,
&timeout, NULL);
rval = pthread_join(thread_id, NULL);
if (rval == ETIMEDOUT) {
printf("Истекли 25 секунд, поток %d все еще выполняется"
" (нехорошо)!\n",
thread_id);
} else {
printf("Поток %d завершен (как и ожидалось!)\n",
thread_id);
}
}
Мы применили макроопределение SIGEV_UNBLOCK_INIT() для инициализации структуры события, но можно было установить sigev_notify в SIGEV_UNBLOCK и «вручную». Можно было даже сделать еще более изящно, передав NULL вместо struct sigevent
— функция TimerTimeout() понимает это как знак, что нужно использовать SIGEV_UNBLOCK.
Если поток (заданный в thread_id ) остается работающим более 10 секунд, то системный вызов завершится по тайм-ауту — функция pthread_join() возвратится с ошибкой, установив errno в ETIMEDOUT.
Вы можете использовать и другую «стенографию», указав NULL в качестве значения тайм-аута (параметр ntime в декларации выше), что предпишет ядру не блокироваться в данном состоянии. Этот прием можно использовать для организации программного опроса. (Хоть программный опрос и считается дурным тоном, его можно весьма эффективно использовать в случае с pthread_join() , периодически проверяя, завершился ли нужный поток. Если нет, можно пока сделать что-нибудь другое.)
Ниже представлен пример программы, в которой демонстрируется неблокирующий вызов pthread_join() :
int pthread_join_nb(int tid, void **rval) {
TimerTimeout(CLOCK_REALTIME, _NTO_TIMEOUT_JOIN,
NULL, NULL, NULL);
return (pthread_join(tid, rval));
}
Все становятся несколько сложнее, когда вы используете тайм-ауты ядра при обмене сообщениями. Вспомните главу «Обмен сообщениями», раздел «Обмен сообщениями и модель «клиент/сервер») — на момент отправки клиентом сообщения сервер может как ожидать его, так и нет. Это означает, что клиент может заблокироваться как по передаче (если сервер еще не принял сообщение), так и по ответу (если сервер принял сообщение, но еще не ответил). Основной смысл здесь в том, что вы должны предусмотреть оба блокирующих состояния в параметре flags функции TimerTimeout() , потому что клиент может оказаться в любом из них.
Чтобы задать несколько состояний, сложите их операцией ИЛИ (OR):
TimerTimeout(... _NTO_TIMEOUT_SEND | _NTO_TIMEOUT_REPLY,
...);
Это вызовет тайм-аут всякий раз, когда ядро переведет клиента в состояние блокировки по передаче (SEND) или по ответу (REPLY). В тайм-ауте SEND-блокировки нет ничего особенного — сервер еще не принял сообщение, значит, ничего для этого клиента он не делает. Это значит, что если ядро генерирует тайм-аут для SEND-блокированного клиента, сервер об этом информировать не обязательно. Функция MsgSend() клиента возвратит признак ETIMEDOUT и обработка тайм-аута завершится.
Однако, как было упомянуто в главе «Обмен сообщениями» (параграф «_NTO_CHF_UNBLOCK»), если сервер уже принял сообщение клиента, и клиент желает разблокироваться, для сервера существует два варианта реакции. Если сервер не указал флаг _NTO_CHF_UNBLOCK на канале, по которому было принято сообщение, клиент будет разблокирован немедленно, и сервер не получит об этом никакого оповещения. У большинства серверов, которые мне доводилось встречать, флаг _NTO_CHF_UNBLOCK был всегда установлен. В этом случае ядро посылает серверу импульс, а клиент остается заблокированным до тех пор, пока сервер ему не ответит! Как было показано в вышеупомянутом разделе главы «Обмен сообщениями», это сделано для того, чтобы сервер мог узнать о запросе клиента на разблокирование и выполнить по этому поводу какие-то действия.
Резюме
Мы рассмотрели функции QNX/Neutrino, ответственные за манипулирование временем, включая таймеры и их применение, а также тайм-ауты ядра. Относительные таймеры обеспечивают генерацию событий «через определенное число секунд», в то время как абсолютные таймеры генерируют события «в определенное время». Таймеры (и, вообще говоря, структура struct sigevent
) могут обеспечить как выдачу импульса или сигнала, так и создание потока.
Ядро создает таймеры, сохраняя абсолютное время, представляющее последующее «событие», в отсортированной очереди и сравнивая текущее время (при помощи обработчика прерываний таймера) с значением, расположенным в голове этой очереди. Когда текущее время становится больше или равно времени, хранящемуся в головном элементе очереди, очередь просматривается на предмет дополнительных совпадений, после чего ядро диспетчеризует события или потоки (в зависимости типа элемента очереди) и, возможно, производит перепланирование.
Для обеспечения поддержки функций энергосбережения вы обязаны отключать периодические таймеры, когда в них нет необходимости, иначе энергосбережения как такового не произойдет — система будет все время думать, что у нее есть работа для периодического выполнения.
Глава 4
Прерывания
QNX/Neutrino и прерывания
В данной главе мы рассмотрим прерывания, как с ними работать в QNX/Neutrino, их воздействие на диспетчеризацию и режим реального времени, а также некоторые стратегии их использования.
Первый вопрос, который приходит на ум: «А что такое прерывание?»
Прерывание — это в точности то, что определяется этим словом — прерывание того, что происходит в данный момент, и переход к выполнению другой задачи.
Например, предположим, что вы сидите за своим рабочим столом и выполняете задание «А». Вдруг звонит телефон — Чрезвычайно Уважаемый Клиент (ЧУК) нуждается в вашем незамедлительном ответе на некий важный вопрос. После того как вы ответите на этот вопрос, вы сможете возвратиться к заданию «А»; впрочем, возможно, что этот ЧУК изменит ваши приоритеты, и вам придется отложить задание «А» и немедленно приступить к заданию «Б».
Давайте теперь рассмотрим это в проекции на QNX/Neutrino.
В любой момент времени процессор занят обработкой готового к выполнению потока с наивысшим приоритетом (этот поток будет находиться в состоянии RUNNING («выполняется»). Чтобы вызвать прерывание, подключенная к шине компьютера аппаратура выставляет сигнал на линии прерывания (в нашей аналогии это был телефонный звонок).
Как только сигнал прерывания выставлен, ядро переключается на участок кода, который настраивает окружение для выполнения подпрограммы обработки прерывания (Interrupt Service Routine — ISR) — кода, который определяет, что должно происходить при обнаружении прерывания.
Читать дальшеИнтервал:
Закладка: