Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform
- Название:Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform
- Автор:
- Жанр:
- Издательство:Петрополис
- Год:2001
- Город:Санкт-Петербург
- ISBN:5-94656-025-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Роб Кёртен - Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform краткое содержание
Книга "Введение в QNX/Neutrino 2» откроет перед вами в мельчайших подробностях все секреты ОСРВ нового поколения от компании QNX Software Systems Ltd (QSSL) — QNX/Neutrino 2. Книга написана в непринужденной манере, легким для чтения и понимания стилем, и поможет любому, от начинающих программистов до опытных системотехников, получить необходимые начальные знания для проектирования надежных систем реального времени, от встраиваемых управляющих приложений до распределенных сетевых вычислительных систем
В книге подробно описаны основные составляющие ОС QNX/Neutrino и их взаимосвязи. В частности, уделено особое внимание следующим темам:
• обмен сообщениями: принципы функционирования и основы применения;
• процессы и потоки: базовые концепции, предостережения и рекомендации;
• таймеры: организация периодических событий в программах;
• администраторы ресурсов: все, что относится к программированию драйверов устройств;
• прерывания: рекомендации по эффективной обработке.
В книге представлено множество проверенных примеров кода, подробных разъяснений и рисунков, которые помогут вам детально вникнуть в и излагаемый материал. Примеры кода и обновления к ним также можно найти на веб-сайте автора данной книги, www.parse.com.
Введение в QNX/Neutrino 2. Руководство по программированию приложений реального времени в QNX Realtime Platform - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Интервал времени от момента установки аппаратурой сигнала прерывания до выполнения первой инструкции обработчика прерываний называют временем реакции на прерывание . Время реакции на прерывание измеряется в микросекундах. Различные процессоры характеризуются различными временами реакции прерывание; это зависит от быстродействия процессора, архитектуры кэша, быстродействия памяти, и, конечно, от эффективности операционной системы.
В нашей аналогии, если вы, например, слушаете музыку в наушниках и не слышите телефонного звонка, вам потребуется больше времени, чтобы обратить внимание на это «прерывание». В QNX/Neutrino может происходить то же самое, поскольку существует инструкция процессора, которая блокирует прерывания (для процессоров x86 это инструкция cli
). Процессор не будет обращать внимание на какие бы то ни было прерывания до тех пор, пока они не будут разблокированы (инструкция sti
для семейства x86).
Чтобы избежать процессорно-зависимых вызовов на ассемблере, QNX/Neutrino обеспечивает четыре функции: InterruptEnable() и InterruptDisable() , и InterruptLock() и InterruptUnlock() . Эти функции принимают на себя все заботы о низкоуровневых деталях всех поддерживаемых платформ.
Обработчик прерывания (ISR) обычно выполняет минимально возможный объем работы и завершается (в нашей аналогии это был бы краткий разговор по телефону с ЧУКом — не заставлять же заказчика ждать на линии несколько часов, пока мы сделаем работу! Достаточно сказать: «Не беспокойтесь, все будет сделано!»). Когда обработчик прерывания (ISR) завершается, он может либо сообщить ядру, что ничего больше делать не надо (это означает, что обработчик прерываний полностью завершил обработку события), либо что ядро должно выполнить некоторое действие, вследствие которого некий поток может переключиться в состояние READY («готов»).
В нашей аналогии сообщение ядру о том, что прерывание полностью обработано, подобно сообщению клиенту ответа на поставленный вопрос — после этого можно спокойно вернуться к тому, что мы делали раньше, зная, что вопрос клиента отработан.
Сообщение ядру о том, что требуется выполнить некоторое действие, подобно убеждению заказчика, что вы работаете над его проблемой и дополнительно сообщите, когда она будет решена. Трубка теперь повешена, но телефон может зазвонить опять.
Подпрограмма обработки прерывания
Обработчик прерывания (ISR) представляет собой фрагмент кода, ответственный за очистку источника прерывания.
Это ключевой момент, особенно с учетом того, что прерывание имеет приоритет выше, чем приоритет любой программы . Это означает, что время, затрачиваемое на выполнение обработчика прерывания, может оказать серьезное воздействие на диспетчеризацию потоков. Время выполнения ISR должно быть минимальным. Давайте исследуем этот вопрос несколько подробнее.
Аппаратное устройство, которое сгенерировало прерывание, будет удерживать сигнал прерывания до тех пор, пока не удостоверится в том, что прерывание успешно обработано. Поскольку аппаратура не умеет читать мысли, программа должна сообщить ей, что отреагировала на вызвавшую прерывание причину. Обычно это выполняется путем чтения регистра состояния из определенного порта ввода/вывода или блока данных из определенного адресного пространства памяти.
При любом событии обычно есть некоторая форма подтверждения между аппаратными средствами и программным обеспечением, чтобы сбросить сигнал прерывания. (Впрочем, иногда подтверждение не предусматривается — например, когда аппаратные средства генерируют прерывание с полной уверенностью, что программное обеспечение обязательно его обработает.)
Поскольку прерывание выполняется с более высоким приоритетом, чем любой программный поток, мы должны потратить как можно меньше времени на непосредственное выполнение обработчика прерывания, чтобы свести воздействие на диспетчеризацию к минимуму. Если очистка источника прерывания выполняется простым считыванием регистра и возможно, записью полученного значения в глобальную переменную, тогда наша задача проста.
Обработка подобного рода выполняется обработчиком прерываний (ISR) последовательного порта. Аппаратура последовательного порта генерирует прерывание по приему символа. Обработчик считывает регистр, содержащий символ, записывает этот символ в кольцевой буфер. Сделано. Общее время на обработку: единицы микросекунд. Ну, собственно, так и должно быть. Представьте, что произошло бы, если бы вы принимали символы со скоростью 115 Кбод (примерно по символу каждые 100 микросекунд); если бы вы затрачивали на обработку прерывания что-то около 100 микросекунд, у вас бы больше ни на что не осталось времени!
Не поймите меня неправильно. ISR последовательного порта может выполняться несколько дольше, потому что в нем еще предусмотрен опрос устройства на предмет наличия дополнительных символов в очереди.
Понятно, что минимизацию времени, затрачиваемого на обработку прерывания, можно трактовать как «повышение качества обслуживания клиента». В нашей аналогии это минимизация времени занятости телефонной линии, чтобы другие клиенты не услышали сигнал «занято».
А что если обработка слишком сложна? Есть два варианта развития событий:
• Затраты времени на очистку источника прерывания невелики, но надо много чего сделать с оборудованием (клиент задал нам короткий вопрос, но на подготовку ответа требуется значительное время).
• Затраты времени на очистку источника прерывания достаточно велики (клиент долго и запутанно объясняет свою проблему).
В первом случае мы бы захотели очистить источник прерывания как можно быстрее, а затем приказать ядру переложить работу с медленной аппаратурой на некий поток. Преимущество такой схемы состоит в том, что ISR проводит на сверхвысоком приоритете минимальное количество времени, а остальная часть работы выполняется потоками на обычных приоритетах. Это подобно ситуации, когда вы подходите к телефону (сверхвысокий приоритет), а затем передаете фактическую работу одному из своих помощников. Далее в данной главе мы рассмотрим, как ISR предписывает ядру запланировать кого-то еще.
Второй случай достаточно уродливый. Если ISR не очистит источник прерывания на момент своего завершения, ядро немедленно будет повторно прервано программируемым контроллером прерываний (Programmable Interrupt Controller — PIC; в процессорах серии x86 серии это микросхема Intel 8259 или ей эквивалентная).
Читать дальшеИнтервал:
Закладка: