Уильям Стивенс - UNIX: разработка сетевых приложений
- Название:UNIX: разработка сетевых приложений
- Автор:
- Жанр:
- Издательство:Питер
- Год:2007
- Город:Санкт-Петербург
- ISBN:5-94723-991-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Уильям Стивенс - UNIX: разработка сетевых приложений краткое содержание
Новое издание книги, посвященной созданию веб-серверов, клиент-серверных приложений или любого другого сетевого программного обеспечения в операционной системе UNIX, — классическое руководство по сетевым программным интерфейсам, в частности сокетам. Оно основано на трудах Уильяма Стивенса и полностью переработано и обновлено двумя ведущими экспертами по сетевому программированию. В книгу включено описание ключевых современных стандартов, реализаций и методов, она содержит большое количество иллюстрирующих примеров и может использоваться как учебник по программированию в сетях, так и в качестве справочника для опытных программистов.
UNIX: разработка сетевых приложений - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
29-31
Поскольку мы будем возвращать указатель на начало связного списка структур ifi_info
, мы используем две переменные ifihead
и ifipnext
для хранения указателей на список по мере его создания.
Следующая часть нашей функции get_ifi_info
, содержащая начало основного цикла, показана в листинге 17.5.
Листинг 17.5. Конфигурация интерфейса процесса
//lib/get_ifi_info.c
34 for (ptr = buf; ptr
35 ifr = (struct ifreq*)ptr;
36 #ifdef HAVE_SOCKADDR_SA_LEN
37 len = max(sizeof(struct sockaddr), ifr->ifr_addr.sa_len);
38 #else
39 switch (ifr->ifr_addr.sa_family) {
40 #ifdef IPV6
41 case AF_INET6:
42 len = sizeof(struct sockaddr_in6);
43 break;
44 #endif
45 case AF_INET:
46 default:
47 len = sizeof(struct sockaddr);
48 break;
49 }
50 #endif /* HAVE_SOCKADDR_SA_LEN */
51 ptr += sizeof(ifr->ifr_name) + len; /* для следующей строки */
52 #ifdef HAVE_SOCKADDR_DL_STRUCT
53 /* предполагается, что AF_LINK идет перед AF_INET и AF_INET6 */
54 if (ifr->ifr_addr.sa_family == AF_LINK) {
55 struct sockaddr_dl *sdl = (struct sockaddr_dl*)&ifr->ifr_addr;
56 sdlname = ifr->ifr_name;
57 idx = sdl->sdl_index;
58 haddr = sdl->sdl_data + sdl->sdl_nlen;
59 hlen = sdl->sdl_alen;
60 }
61 #endif
62 if (ifr->ifr_addr.sa_family != family)
63 continue; /* игнорируется, если семейство адреса не то */
64 myflags = 0;
65 if ((cptr = strchr(ifr->ifr_name, ':')) != NULL)
66 *cptr = 0; /* замена двоеточия нулем */
67 if (strncmp(lastname, ifr->ifr_name, IFNAMSIZ) == 0) {
68 if (doaliases == 0)
69 continue; /* этот интерфейс уже обработан */
70 myflags = IFI_ALIAS;
71 }
72 memcpy(lastname, ifr->ifr_name, IFNAMSIZ);
73 ifrcopy = *ifr;
74 Ioctl(sockfd, SIOCGIFFLAGS, &ifrcopy);
75 flags = ifrcopy.ifr_flags;
76 if ((flags & IFF_UP) == 0)
77 continue; /* игнорируется, если интерфейс не используется */
35-51
При последовательном просмотре всех структур i freq ifr
указывает на текущую структуру, а мы увеличиваем ptr
на единицу, чтобы он указывал на следующую. Необходимо предусмотреть особенность более новых систем, предоставляющих поле длины для структур адреса сокета, и вместе с тем учесть, что более старые системы этого поля не предоставляют. Хотя в листинге 17.1 структура адреса сокета, содержащаяся в структуре ifreq
, объявляется как общая структура адреса сокета, в новых системах она может относиться к произвольному типу. Действительно, в 4.4BSD структура адреса сокета канального уровня также возвращается для каждого интерфейса [128, с. 118]. Следовательно, если поддерживается элемент длины, то мы должны использовать его значение для переустановки нашего указателя на следующую структуру адреса сокета. В противном случае мы определяем длину, исходя из семейства адресов, используя размер общей структуры адреса сокета (16 байт) в качестве значения по умолчанию.
В системах, поддерживающих IPv6, не оговаривается, возвращается ли адрес IPv6 вызовом SIOCGIFCONF. Для более новых систем мы вводим оператор case, в котором предусмотрена возможность возвращения адресов IPv6. Проблема состоит в том, что объединение в структуре ifreq определяет возвращаемые адреса как общие 16-байтовые структуры sockaddr, подходящие для 16-байтовых структур sockaddr_in IPv4, но для 24-байтовых структур sockaddr_in6 IPv6 они слишком малы. В случае возвращения адресов IPv6 возможно некорректное поведение существующего кода, созданного в предположении, что в каждой структуре ifreq содержится структура sockaddr фиксированного размера. В системах, где структура sockaddr имеет поле sa_len, никаких проблем не возникает, потому что такие системы легко могут указывать размер структур sockaddr.
52-60
Если система возвращает структуры sockaddr
семейства AF_LINK
в SIOCGIFCONF
, мы копируем индекс интерфейса и данные об аппаратном адресе из таких структур.
62-63
Мы игнорируем все адреса из семейств, отличных от указанного вызывающим процессом в аргументе функции get_ini_info
.
64-72
Нам нужно обнаружить все альтернативные имена (псевдонимы), которые могут существовать для интерфейса, то есть присвоенные этому интерфейсу дополнительные адреса. Обратите внимание в наших примерах, следующих за листингом 17.3, что в Solaris псевдоним содержит двоеточие, в то время как в 4.4BSD имя интерфейса в псевдониме не изменяется. Чтобы обработать оба случая, мы сохраняем последнее имя интерфейса в lastname
и сравниваем его только до двоеточия, если оно присутствует. Если двоеточия нет, мы игнорируем этот интерфейс в том случае, когда имя эквивалентно последнему обработанному интерфейсу.
73-77
Мы выполняем вызов SIOCGIFFLAGS
функции ioctl
(см. раздел 16.5), чтобы получить флаги интерфейса. Третий аргумент функции ioctl
— это указатель на структуру ifreq
, содержащую имя интерфейса, для которого мы хотим получить флаги. Мы создаем копию структуры ifreq
, перед тем как запустить функцию ioctl, поскольку в противном случае этот вызов перезаписал бы IP-адрес интерфейса, потому что оба они являются элементами одного и того же объединения из листинга 17.1. Если интерфейс не активен, мы игнорируем его.
В листинге 17.6 представлена третья часть нашей функции.
Листинг 17.6. Получение и возвращение адресов интерфейса
//ioctl/get_ifi_infо.c
78 ifi = Calloc(1, sizeof(struct ifi_info));
79 *ifipnext = ifi; /* prev указывает на новую структуру */
80 ifipnext = &ifi->ifi_next; /* сюда указывает указатель на
следующую структуру */
81 ifi->ifi_flags = flags; /* значения IFF_xxx */
82 ifi->ifi_myflags = myflags; /* значения IFI_xxx */
83 #if defined(SIOCGIFMTU) && defined(HAVE_STRUCT_IFREQ_IFR_MTU)
84 Ioctl(sockfd, SIOCGIFMTU, &ifrcopy);
85 ifi->ifi_mtu = ifrcopy.ifr_mtu;
86 #else
87 ifi->ifi_mtu = 0;
88 #endif
89 memcpy(ifi->ifi_name, ifr->ifr_name, IFI_NAME);
90 ifi->ifi_name[IFI_NAME-1] = '\0';
91 /* если sockaddr_dl относится к другому интерфейсу, он игнорируется */
92 if (sdlname == NULL || strcmp(sdlname, ifr->ifr_name) != 0)
93 idx = hlen = 0;
94 ifi->ifi_index = idx;
95 ifi->ifi_hlen = hlen;
96 if (ifi->ifi_hlen > IFI_HADDR)
97 ifi->ifi_hlen = IFI_HADDR;
98 if (hlen)
99 memcpy(ifi->ifi_haddr, haddr, ifi->ifi_hlen);
78-99
На этом этапе мы знаем, что возвратим данный интерфейс вызывающему процессу. Мы выделяем память для нашей структуры ifi_info
и добавляем ее в конец связного списка, который мы создаем. Мы копируем флаги и имя интерфейса в эту структуру. Далее мы проверяем, заканчивается ли имя интерфейса нулем, и поскольку функция callос
инициализирует выделенную в памяти область нулями, мы знаем, что ifi_hlen
инициализируется нулем, a ifi_next
— пустым указателем.
Интервал:
Закладка: