Уильям Стивенс - UNIX: разработка сетевых приложений
- Название:UNIX: разработка сетевых приложений
- Автор:
- Жанр:
- Издательство:Питер
- Год:2007
- Город:Санкт-Петербург
- ISBN:5-94723-991-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Уильям Стивенс - UNIX: разработка сетевых приложений краткое содержание
Новое издание книги, посвященной созданию веб-серверов, клиент-серверных приложений или любого другого сетевого программного обеспечения в операционной системе UNIX, — классическое руководство по сетевым программным интерфейсам, в частности сокетам. Оно основано на трудах Уильяма Стивенса и полностью переработано и обновлено двумя ведущими экспертами по сетевому программированию. В книгу включено описание ключевых современных стандартов, реализаций и методов, она содержит большое количество иллюстрирующих примеров и может использоваться как учебник по программированию в сетях, так и в качестве справочника для опытных программистов.
UNIX: разработка сетевых приложений - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Заключительная часть функции main
показана в листинге 22.15. В этом коде при помощи функции bind
происходит связывание с универсальным адресом для обработки любого адреса получателя, отличного от адресов направленной и широковещательной передачи, которые уже связаны. На этот сокет будут приходить только дейтаграммы, предназначенные для ограниченного широковещательного адреса (255.255.255.255).
Листинг 22.15. Заключительная часть сервера UDP, связывающегося со всеми адресами
//advio/udpserv03.c
50 /* связываем универсальный адрес */
51 sockfd = Socket(AF_INET, SOCK_DGRAM, 0);
52 Setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));
53 bzero(&wildaddr, sizeof(wildaddr));
54 wildaddr.sin_family = AF_INET;
55 wildaddr.sin_addr.s_addr = htonl(INADDR_ANY);
56 wildaddr.sin_port = htons(SERV_PORT);
57 Bind(sockfd, (SA*)&wildaddr, sizeof(wildaddr));
58 printf("bound %s\n", Sock_ntop((SA*)&wildaddr, sizeof(wildaddr)));
59 if ((pid = Fork()) == 0) { /* дочерний процесс */
60 mydg_echo(sockfd, (SA*)&cliaddr, sizeof(cliaddr), (SA*)sa);
61 exit(0); /* не выполняется */
62 }
63 exit(0);
64 }
50-62
Создается сокет UDP, устанавливается параметр сокета SO_REUSEADDR
и происходит связывание с универсальным IP-адресом. Порождается дочерний процесс, вызывающий функцию mydg_echo
.
63
Функция main
завершается, и сервер продолжает выполнять работу, как и все порожденные дочерние процессы.
Функция mydg_echo
, которая выполняется всеми дочерними процессами, показана в листинге 22.16.
Листинг 22.16. Функция mydg_echo
//advio/udpserv03.c
65 void
66 mydg_echo(int sockfd, SA *pcliaddr, socklen_t clilen, SA *myaddr)
67 {
68 int n;
69 char mesg[MAXLINE];
70 socklen_t len;
71 for (;;) {
72 len = clilen;
73 n = Recvfrom(sockfd, mesg, MAXLINE, 0, pcliaddr, &len);
74 printf("child %d, datagram from %s", getpid(),
75 Sock_ntop(pcliaddr, len));
76 printf(", to %s\n", Sock_ntop(myaddr, clilen));
77 Sendto(sockfd, mesg, n, 0, pcliaddr, len);
78 }
79 }
65-66
Четвертым аргументом этой функции является IP-адрес, связанный с сокетом. Этот сокет должен получать только дейтаграммы, предназначенные для данного IP-адреса. Если IP-адрес является универсальным, сокет должен получать только те дейтаграммы, которые не подходят ни для какого другого сокета, связанного с тем же портом.
71-78
Дейтаграмма читается с помощью функции recvfrom
и отправляется клиенту обратно с помощью функции sendto
. Эта функция также выводит IP-адрес клиента и IP-адрес, который был связан с сокетом.
Запустим эту программу на нашем узле solaris
после установки псевдонима для интерфейса hme0
Ethernet. Адрес псевдонима: узел 200 в сети 10.0.0/24.
solaris % udpserv03
bound 127.0.0.1:9877 интерфейс закольцовки
bound 10.0.0.200:9877 направленный адрес интерфейса hme0:1
bound 10.0.0.255:9877 широковещательный адрес интерфейса hme0:1
bound 192.168.1.20:9877 направленный адрес интерфейса hme0
bound 192.168.1.255:9877 широковещательный адрес интерфейса hme0
bound 0.0.0.0.9877 универсальный адрес
При помощи утилиты netstat
мы можем проверить, что все сокеты связаны с указанными IP-адресами и портом:
solaris % netstat -na | grep 9877
127.0.0.1.9877 Idle
10.0.0.200.9877 Idle
*.9877 Idle
192.129.100.100.9877 Idle
*.9877 Idle
*.9877 Idle
Следует отметить, что для простоты мы создаем по одному дочернему процессу на сокет, хотя возможны другие варианты. Например, чтобы ограничить число процессов, программа может управлять всеми дескрипторами сама, используя функцию select
и не вызывая функцию fork
. Проблема в данном случае будет заключаться в усложнении кода. Хотя использовать функцию select
для всех дескрипторов несложно, нам придется осуществить некоторое сопоставление каждого дескриптора связанному с ним IP-адресу (вероятно, с помощью массива структур), чтобы иметь возможность вывести IP-адрес получателя после того, как на определенном сокете получена дейтаграмма. Часто бывает проще использовать отдельный процесс или поток для каждой операции или дескриптора вместо мультиплексирования множества различных операций или дескрипторов одним процессом.
22.7. Параллельные серверы UDP
Большинство серверов UDP являются последовательными (iterative): сервер ждет запрос клиента, считывает запрос, обрабатывает его, отправляет обратно ответ и затем ждет следующий клиентский запрос. Но когда обработка запроса клиента занимает длительное время, желательно так или иначе совместить во времени обработку различных запросов.
Определение «длительное время» означает, что другой клиент вынужден ждать в течение некоторого заметного для него промежутка времени, пока обслуживается текущий клиент. Например, если два клиентских запроса приходят в течение 10 мс и предоставление сервиса каждому клиенту занимает в среднем 5 с, то второй клиент будет вынужден ждать ответа около 10 с вместо 5 с (если бы запрос был принят в обработку сразу же по прибытии).
В случае TCP проблема решается просто — требуется лишь породить дочерний процесс с помощью функции fork
(или создать новый поток, что мы увидим в главе 23) и дать возможность дочернему процессу выполнять обработку нового клиента. При использовании TCP ситуация существенно упрощается за счет того, что каждое клиентское соединение уникально: пара сокетов TCP уникальна для каждого соединения. Но в случае с UDP мы вынуждены рассматривать два различных типа серверов.
1. Первый тип — простой сервер UDP, который читает клиентский запрос, посылает ответ и затем завершает работу с клиентом. В этом сценарии сервер, читающий запрос клиента, может с помощью функции fork
породить дочерний процесс и дать ему возможность обработать запрос. «Запрос», то есть содержимое дейтаграммы и структура адреса сокета, содержащая адрес протокола клиента, передаются дочернему процессу в виде копии содержимого области памяти из функции fork
. Затем дочерний процесс посылает свой ответ непосредственно клиенту.
2. Второй тип — сервер UDP, обменивающийся множеством дейтаграмм с клиентом. Проблема здесь в том, что единственный номер порта сервера, известный клиенту, — это номер заранее известного порта. Клиент посылает первую дейтаграмму своего запроса на этот порт, но как сервер сможет отличить последующие дейтаграммы этого клиента от запросов новых клиентов? Типичным решением этой проблемы для сервера будет создание нового сокета для каждого клиента, связывание при помощи функции bind
динамически назначаемого порта с этим сокетом и использование этого сокета для всех своих ответов. При этом требуется, чтобы клиент запомнил номер порта, с которого был отправлен первый ответ сервера, и отправлял последующие дейтаграммы уже на этот порт.
Интервал:
Закладка: