Уильям Стивенс - UNIX: разработка сетевых приложений
- Название:UNIX: разработка сетевых приложений
- Автор:
- Жанр:
- Издательство:Питер
- Год:2007
- Город:Санкт-Петербург
- ISBN:5-94723-991-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Уильям Стивенс - UNIX: разработка сетевых приложений краткое содержание
Новое издание книги, посвященной созданию веб-серверов, клиент-серверных приложений или любого другого сетевого программного обеспечения в операционной системе UNIX, — классическое руководство по сетевым программным интерфейсам, в частности сокетам. Оно основано на трудах Уильяма Стивенса и полностью переработано и обновлено двумя ведущими экспертами по сетевому программированию. В книгу включено описание ключевых современных стандартов, реализаций и методов, она содержит большое количество иллюстрирующих примеров и может использоваться как учебник по программированию в сетях, так и в качестве справочника для опытных программистов.
UNIX: разработка сетевых приложений - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
for (;;) {
Sigprocmask(SIG_BLOCK, &newmask, &oldmask);
while (nqueue == 0)
sigsuspend(&zeromask); /* ожидание дейтаграммы для обработки */
nqueue--;
/* разблокирование SIGIO */
Sigprocmask(SIG_SETMASK, &oldmask, NULL);
Sendto(sockfd, dg[iget].dg_data, dg[iget].dg_len, 0,
dg[iget].dg_sa, dg[iget].dg_salen);
if (++iget >= QSIZE)
iget = 0;
}
Верна ли такая модификация?
Глава 26
Программные потоки
26.1. Введение
Согласно традиционной модели Unix, когда процессу требуется, чтобы некое действие было выполнено каким-либо другим объектом, он порождает дочерний процесс, используя функцию fork
, и этим порожденным процессом выполняется необходимое действие. Большинство сетевых серверов под Unix устроены именно таким образом, как мы видели при рассмотрении примера параллельного (concurrent) сервера: родительский процесс осуществляет соединение с помощью функции accept
и порождает дочерний процесс, используя функцию fork
, а затем дочерний процесс занимается обработкой клиентского запроса.
Хотя эта концепция с успехом использовалась на протяжении многих лет, с функцией fork
связаны определенные неудобства.
■ Стоимость функции fork
довольно высока, так как при ее использовании требуется скопировать все содержимое памяти из родительского процесса в дочерний, продублировать все дескрипторы и т.д. Текущие реализации используют технологию, называемую копированием при записи ( copy-on-write ), при которой копирование пространства данных из родительского процесса в дочерний происходит лишь тогда, когда дочернему процессу требуется своя собственная копия. Но несмотря на эту оптимизацию, стоимость функции fork
остается высокой.
■ Для передачи данных между родительским и дочерним процессами после вызова функции fork
требуется использовать средства взаимодействия процессов (IPC). Передача информации перед вызовом fork
не вызывает затруднений, так как при запуске дочерний процесс получает от родительского копию пространства данных и копии всех родительских дескрипторов. Но возвращение информации из дочернего процесса в родительский требует большей работы.
Обе проблемы могут быть разрешены путем использования программных потоков ( threads ). Программные потоки иногда называются облегченными процессами ( lightweight processes ), так как поток проще, чем процесс. В частности, создание потока требует в 10–100 раз меньше времени, чем создание процесса.
Все потоки одного процесса совместно используют его глобальные переменные, поэтому им легко обмениваться информацией, но это приводит к необходимости синхронизации.
Однако общими становятся не только глобальные переменные. Все потоки одного процесса разделяют:
■ инструкции процесса;
■ большую часть данных;
■ открытые файлы (например, дескрипторы);
■ обработчики сигналов и вообще настройки для работы с сигналами (действие сигнала);
■ текущий рабочий каталог;
■ идентификаторы пользователя и группы пользователей.
У каждого потока имеются собственные:
■ идентификатор потока;
■ набор регистров, включая счетчик команд и указатель стека;
■ стек (для локальных переменных и адресов возврата);
■ переменная errno
;
■ маска сигналов;
■ приоритет.
Как сказано в разделе 11.18, можно рассматривать обработчик сигнала как некую разновидность потока. В традиционной модели Unix у нас имеется основной поток выполнения и обработчик сигнала (другой поток). Если в основном потоке в момент возникновения сигнала происходит корректировка связного списка и обработчик сигнала также пытается изменить связный список, обычно начинается путаница. Основной поток и обработчик сигнала совместно используют одни и те же глобальные переменные, но у каждого из них имеется свой собственный стек.
В этой книге мы рассматриваем потоки POSIX, которые также называются Pthreads (POSIX threads). Они были стандартизованы в 1995 году как часть POSIX.1c и будут поддерживаться большинством версий Unix. Мы увидим, что все названия функций Pthreads начинаются с символов pthread_
. Эта глава является введением в концепцию потоков, необходимым для того, чтобы в дальнейшем мы могли использовать потоки в наших сетевых приложениях. Более подробную информацию вы можете найти в [15].
26.2. Основные функции для работы с потоками: создание и завершение потоков
В этом разделе мы рассматриваем пять основных функций для работы с потоками, а в следующих двух разделах мы используем эти функции для написания потоковой модификации клиента и сервера TCP.
Функция pthread_create
Когда программа запускается с помощью функции exec
, создается один поток, называемый начальным ( initial ) или главным ( main ). Дополнительные потоки создаются функцией pthread_create
.
#include
int pthread_create(pthread_t* tid , const pthread_attr_t * attr ,
void *(* func )(void*), void * arg );
Возвращает: 0 в случае успешного выполнения, положительное значение Exxx в случае ошибки
Каждый поток процесса обладает собственным идентификатором потока ( thread ID ), относящимся к типу данных pthread_t
(как правило, это unsigned int
). При успешном создании нового потока его идентификатор возвращается через указатель tid
.
У каждого потока имеется несколько атрибутов : его приоритет, исходный размер стека, указание на то, должен ли этот поток являться демоном или нет, и т.д. При создании потока мы можем задать эти атрибуты, инициализируя переменную типа pthread_attr_t
, что позволяет заменить значение, заданное по умолчанию. Обычно мы используем значение по умолчанию, в этом случае мы задаем аргумент attr
равным пустому указателю.
Наконец, при создании потока мы должны указать, какую функцию будет выполнять этот поток. Выполнение потока начинается с вызова заданной функции, а завершается либо явно (вызовом pthread_exit
), либо неявно (когда вызванная функция возвращает управление). Адрес функции задается аргументом func
, и она вызывается с единственным аргументом-указателем arg
. Если этой функции необходимо передать несколько аргументов, следует поместить их в некоторую структуру и передать адрес этой структуры как единственный аргумент функции.
Обратите внимание на объявления func
и arg
. Функции передается один аргумент — универсальный указатель void*
. Это позволяет нам передавать потоку с помощью единственного указателя все, что требуется, и точно так же поток возвращает любые данные, используя этот указатель.
Возвращаемое значение функций Pthreads — это обычно 0 в случае успешного выполнения или ненулевая величина в случае ошибки. Но в отличие от функций сокетов и большинства системных вызовов, для которых в случае ошибки возвращается -1 и переменной errno
присваивается некоторое положительное значение (код ошибки), функции Pthreads возвращают сам код ошибки. Например, если функция pthread_create
не может создать новый поток, так как мы превысили допустимый системный предел количества потоков, функция возвратит значение EAGAIN
. Функции Pthreads не присваивают переменной errno
никаких значений. Соглашение о том, что 0 является индикатором успешного выполнения, а ненулевое значение — индикатором ошибки, не приводит к противоречию, так как все значения Exxx
, определенные в заголовочном файле , являются положительными. Ни одному из имен ошибок Exxx не сопоставлено нулевое значение.
Интервал:
Закладка: