Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ

Тут можно читать онлайн Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-programming, издательство ДМК Пресс, год 2012. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Параллельное программирование на С++ в действии. Практика разработки многопоточных программ
  • Автор:
  • Жанр:
  • Издательство:
    ДМК Пресс
  • Год:
    2012
  • Город:
    Москва
  • ISBN:
    978-5-94074-448-1
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ краткое содержание

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - описание и краткое содержание, автор Энтони Уильямс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В наши дни компьютеры с несколькими многоядерными процессорами стали нормой. Стандарт С++11 языка С++ предоставляет развитую поддержку многопоточности в приложениях. Поэтому, чтобы сохранять конкурентоспособность, вы должны овладеть принципами и приемами их разработки, а также новыми средствами языка, относящимися к параллелизму.
Книга «Параллельное программирование на С++ в действии» не предполагает предварительных знаний в этой области. Вдумчиво читая ее, вы научитесь писать надежные и элегантные многопоточные программы на С++11. Вы узнаете о том, что такое потоковая модель памяти, и о том, какие средства поддержки многопоточности, в том числе запуска и синхронизации потоков, имеются в стандартной библиотеке. Попутно вы познакомитесь с различными нетривиальными проблемами программирования в условиях параллелизма.

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - читать онлайн бесплатно полную версию (весь текст целиком)

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - читать книгу онлайн бесплатно, автор Энтони Уильямс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Точно такая же проблема возникает при использовании одного из рассмотренных выше простых пулов потоков вместо std::async, как в примере из главы 4. Число потоков тоже ограничено, и может случиться так, что все они будут ждать задач, которые еще запланированы, так как нет свободных потоков. И решение должно быть таким же,

как в главе 8: обрабатывать стоящие в очереди блоки во время ожидания завершения сортировки своего блока. Но если мы применяем пул потоков для управления списком задач и их ассоциациями с потоками — а именно в этом и состоит смысл пула потоков, — то доступа к списку задач у нас нет. Поэтому необходимо модифицировать сам пул, чтобы он делал это автоматически.

Проще всего будет добавить в класс thread_poolновую функцию, чтобы исполнять задачу из очереди и управлять циклом самостоятельно. Так мы и поступим. Более развитые реализации пула могли бы включить дополнительную логику в функцию ожидания или добавить другие функции ожидания для обработки этого случая, быть может, даже назначая приоритеты ожидаемым задачам. В листинге ниже приведена новая функция run_pending_task(), а модифицированный алгоритм Quicksort, в котором она используется, показан в листинге 9.5.

Листинг 9.4.Реализация функции run_pending_task()

void thread_pool::run_pending_task() {

function_wrapper task;

if (work_queue.try_pop(task)) {

task();

} else {

std::this_thread::yield();

}

}

Код run_pending_task()вынесен из главного цикла внутри функции worker_thread(), которую теперь можно будет изменить, так чтобы она вызывала run_pending_task(). Функция run_pending_task()пытается получить задачу из очереди и в случае успеха выполняет ее; если очередь пуста, то функция уступает управление ОС, чтобы та могла запланировать другой поток. Показанная ниже реализация Quicksort гораздо проще, чем версия в листинге 8.1, потому что вся логика управления потоками перенесена в пул.

Листинг 9.5.Реализация Quicksort на основе пула потоков

template

struct sorter { ← (1)

thread_pool pool; ← (2)

std::list do_sort(std::list& chunk_data) {

if (chunk_data.empty()) {

return chunk_data;

}

std::list result;

result.splice(result.begin(), chunk_data, chunk_data.begin());

T const& partition_val = *result.begin();

typename std::list::iterator divide_point =

std::partition(chunk_data.begin(), chunk_data.end(),

[&](T const& val){ return val < partition_val; });

std::list new_lower_chunk;

new_lower_chunk.splice(new_lower_chunk.end(),

chunk_data, chunk_data.begin(),

divide_point);

std::future > new_lower = ← (3)

pool.submit(std::bind(&sorter::do_sort, this,

std::move(new_lower_chunk)));

std::list new_higher(do_sort(chunk_data));

result.splice(result.end(), new_higher);

while (!new_lower.wait_for(std::chrono::seconds(0)) ==

std::future_status::timeout) {

pool.run_pending_task(); ← (4)

}

result.splice(result.begin(), new_lower.get());

return result;

}

};

template

std::list parallel_quick_sort(std::list input) {

if (input.empty()) {

return input;

}

sorter s;

return s.do_sort(input);

}

Как и в листинге 8.1, реальная работа делегируется функции-члену do_sort()шаблона класса sorter (1), хотя в данном случае этот шаблон нужен лишь для обертывания экземпляра thread_pool (2).

Управление потоками и задачами теперь свелось к отправке задачи пулу (3)и исполнению находящихся в очереди задач в цикле ожидания (4). Это гораздо проще, чем в листинге 8.1, где нужно было явно управлять потоками и стеком подлежащих сортировке блоков. При отправке задачи пулу мы используем функцию std::bind(), чтобы связать указатель thisс do_sort()и передать подлежащий сортировке блок. В данном случае мы вызываем std::move(), чтобы данные new_lower_chunkперемещались, а не копировались.

Мы решили проблему взаимоблокировки, возникающую из- за того, что одни потоки ждут других, но этот пул все еще далек от идеала. Отметим хотя бы, что все вызовы submit()и run_pending_task()обращаются к одной и той же очереди. В главе 8 мы видели, что модификация одного набора данных из разных потоков может негативно сказаться на производительности, стало быть, с этим нужно что-то делать.

9.1.4. Предотвращение конкуренции за очередь работ

Всякий раз, как поток вызывает функцию submit()экземпляра пула потоков, он помещает новый элемент в единственную разделяемую очередь работ. А рабочие потоки постоянно извлекают элементы из той же очереди. Следовательно, по мере увеличения числа процессоров будет возрастать конкуренция за очередь работ. Это может ощутимо отразиться на производительности; даже при использовании свободной от блокировок очереди, в которой нет явного ожидания, драгоценное время может тратиться на перебрасывание кэша.

Чтобы избежать перебрасывания кэша, мы можем завести по одной очереди работ на каждый поток. Тогда каждый поток будет помещать новые элементы в свою собственную очередь и брать работы из глобальной очереди работ только тогда, когда в его очереди работ нет. В следующем листинге приведена реализация с использованием переменной типа thread_local, благодаря которой каждый поток обладает собственной очередью работ в дополнение к глобальной.

Листинг 9.6.Пул с очередями в поточно-локальной памяти

class thread_pool {

thread_safe_queue pool_work_queue;

typedef std::queue local_queue_type;← (1)

static thread_local std::unique_ptr

local_work_queue; ← (2)

void worker_thread() {

local_work_queue.reset(new local_queue_type);← (3)

while (!done) {

run_pending_task();

}

}

public:

template

std::future::type>

submit(FunctionType f) {

typedef typename std::result_of::type

result_type;

std::packaged_task task(f);

std::future res(task.get_future());

if (local_work_queue) { ← (4)

local_work_queue->push(std::move(task));

} else {

pool_work_queue.push(std::move(task)); ← (5)

}

return res;

}

void run_pending_task() {

function_wrapper task;

if (local_work_queue && !local_work_queue->empty()) {← (6)

task = std::move(local_work_queue->front());

local_work_queue->pop();

task();

} else if(pool_work_queue.try_pop(task)) { ← (7)

task();

} else {

std::this_thread::yield();

}

}

// остальное, как и раньше

};

Для хранения очереди работ в поточно-локальной памяти мы воспользовались указателем std::unique_ptr<> (2), потому что не хотим, чтобы у потоков, не входящих в пул, была очередь; этот указатель инициализируется в функции worker_thread()до начала цикла обработки (3). Деструктор std::unique_ptr<>позаботится об уничтожении очереди работ по завершении потока.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Энтони Уильямс читать все книги автора по порядку

Энтони Уильямс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Параллельное программирование на С++ в действии. Практика разработки многопоточных программ отзывы


Отзывы читателей о книге Параллельное программирование на С++ в действии. Практика разработки многопоточных программ, автор: Энтони Уильямс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x