Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ

Тут можно читать онлайн Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-programming, издательство ДМК Пресс, год 2012. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Параллельное программирование на С++ в действии. Практика разработки многопоточных программ
  • Автор:
  • Жанр:
  • Издательство:
    ДМК Пресс
  • Год:
    2012
  • Город:
    Москва
  • ISBN:
    978-5-94074-448-1
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ краткое содержание

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - описание и краткое содержание, автор Энтони Уильямс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В наши дни компьютеры с несколькими многоядерными процессорами стали нормой. Стандарт С++11 языка С++ предоставляет развитую поддержку многопоточности в приложениях. Поэтому, чтобы сохранять конкурентоспособность, вы должны овладеть принципами и приемами их разработки, а также новыми средствами языка, относящимися к параллелизму.
Книга «Параллельное программирование на С++ в действии» не предполагает предварительных знаний в этой области. Вдумчиво читая ее, вы научитесь писать надежные и элегантные многопоточные программы на С++11. Вы узнаете о том, что такое потоковая модель памяти, и о том, какие средства поддержки многопоточности, в том числе запуска и синхронизации потоков, имеются в стандартной библиотеке. Попутно вы познакомитесь с различными нетривиальными проблемами программирования в условиях параллелизма.

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - читать онлайн бесплатно полную версию (весь текст целиком)

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - читать книгу онлайн бесплатно, автор Энтони Уильямс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Затем функция submit()проверяет, есть ли у текущего потока очередь работ (4). Если есть, то это поток из пула, и мы можем поместить задачу в локальную очередь. В противном случае задачу следует помещать в очередь пула, как и раньше (5).

Аналогичная проверка имеется в функции run_pending_task() (6), только на этот раз нужно еще проверить, есть ли что-нибудь в локальной очереди. Если есть, то можно извлечь элемент из начала очереди и обработать его. Обратите внимание, что локальная очередь может быть обычным объектом std::queue<> (1), так как к ней обращается только один поток. Если в локальной очереди задач нет, то мы проверяем очередь пула, как и раньше (7).

Таким образом мы действительно уменьшаем конкуренцию, но если распределение работ неравномерно, то может случиться, что в очереди одного потока скопится много задач, тогда как остальным будет нечем заняться. Например, в случае Quicksort только самый первый блок попадает в очередь пула, а остальные окажутся в локальной очереди того потока, который этот блок обработал. Это сводит на нет всю идею пула потоков.

К счастью, у этой проблемы есть решение: позволить потоку занимать (steal) работы из очередей других потоков, если ни в его собственной, ни в глобальной очереди ничего нет.

9.1.5. Занимание работ

Если мы хотим, чтобы «безработный» поток мог брать работы из очереди другого потока, то эта очередь должна быть доступна занимающему потоку в run_pending_tasks(). Для этого каждый поток должен зарегистрировать свою очередь в пуле или получать очередь от пула. Кроме того, необходимо позаботиться о надлежащей синхронизации и защите очереди работ, чтобы не нарушались инварианты.

Можно написать свободную от блокировок очередь, которая позволит потоку-владельцу помещать и извлекать элементы с одного конца, а другим потокам — занимать элементы с другого конца, однако реализация такой очереди выходит за рамки данной книги. Чтобы продемонстрировать идею, мы поступим проще — воспользуемся мьютексом для защиты данных очереди. Мы надеемся, что занимание работ — редкое событие, поэтому конкуренция за мьютекс будет невелика, и накладные расходы на такую очередь окажутся минимальны. Ниже приведена простая реализация с блокировками.

Листинг 9.7.Очередь с блокировкой, допускающей занимание работ

class work_stealing_queue {

private:

typedef function_wrapper data_type;

std::deque the_queue; ← (1)

mutable std::mutex the_mutex;

public:

work_stealing_queue() {}

work_stealing_queue(const work_stealing_queue& other)=delete;

work_stealing_queue& operator=(

const work_stealing_queue& other)=delete;

void push(data_type data) { ← (2)

std::lock_guard lock(the_mutex);

the_queue.push_front(std::move(data));

}

bool empty() const {

std::lock_guard lock(the_mutex);

return the_queue.empty();

}

bool try_pop(data_type& res) { ← (3)

std::lock_guard lock(the_mutex);

if (the_queue.empty()) {

return false;

}

res = std::move(the_queue.front());

the_queue.pop_front();

return true;

}

bool try_steal(data_type& res) { ← (4)

std::lock_guard lock(the_mutex);

if (the_queue.empty()) {

return false;

}

res = std::move(the_queue.back());

the_queue.pop_back();

return true;

}

};

Этот класс является простой оберткой вокруг std::deque (1), которая защищает все операции доступа к очереди с помощью мьютекса. Функции push() (2)и try_ pop() (3)работают с началом очереди, а функция try_steal() — с концом (4).

Получается, что эта «очередь» для потока-владельца на самом деле является стеком, обслуживаемым согласно дисциплине «последним пришёл, первым обслужен», — задача, которая была помещена последней, извлекается первой. С точки зрения кэш-памяти это даже может повысить производительность, так как относящиеся к последней задаче данные с большей вероятностью окажутся в кэше, чем данные, относящиеся к предыдущей задаче. К тому же, такая дисциплина прекрасно подходит для алгоритмов типа Quicksort. В предшествующих реализациях каждое обращение к do_sort()помещает элемент в очередь, а затем ждет его. Обрабатывая последний помещенный в очередь элемент первым, мы гарантируем, что блок, необходимый текущему вызову для завершения работы, будет обработан раньше блоков, нужных другим ветвям, а, значит, уменьшается как количество активных задач, так и занятый размер стека. Функция try_steal()извлекает элементы из противоположного по сравнению с try_pop()конца очереди, чтобы минимизировать конкуренцию; в принципе, можно было бы применить технику, обсуждавшуюся в главах 6 и 7, чтобы поддержать одновременные обращения к try_pop()и try_steal().

Итак, теперь у нас есть замечательная очередь работ, допускающая занимание. Но как воспользоваться ей в пуле потоков? Ниже приведена одна из возможных реализаций.

Листинг 9.8.Пул потоков с использованием занимания работ

class thread_pool {

typedef function_wrapper task_type;

std::atomic_bool done;

thread_safe_queue pool_work_queue;

std::vector > queues;← (1)

std::vector threads;

join_threads joiner;

static thread_local work_stealing_queue* local_work_queue;← (2)

static thread_local unsigned my_index;

void worker_thread(unsigned my_index_) {

my_index = my_index_;

local_work_queue = queues[my_index].get(); ← (3)

while (!done) {

run_pending_task();

}

}

bool pop_task_from_local_queue(task_type& task) {

return local_work_queue && local_work_queue->try_pop(task);

}

bool pop_task_from_pool_queue(task_type& task) {

return pool_work_queue.try_pop(task);

}

bool pop_task_from_other_thread_queue(task_type& task) { ← (4)

for (unsigned i = 0; i < queues.size(); ++i) {

unsigned const index = (my_index + i + 1) % queues.size();← (5)

if (queues[index]->try_steal(task)) {

return true;

}

}

return false;

}

public:

thread_pool() :

done(false), joiner(threads) {

unsigned const thread_count =

std::thread::hardware_concurrency();

try {

for (unsigned i = 0; i < thread_count; ++i) {

queues.push_back(std::unique_ptr (← (6)

new work_stealing_queue));

threads.push_back(

std::thread(&thread_pool::worker_thread, this, i));

}

} catch (...) {

done = true;

throw;

}

}

~thread_pool() {

done = true;

}

template

std::future::type> submit(

FunctionType f) {

typedef typename std::result_of::type

result_type;

std::packaged_task task(f);

std::future res(task.get_future());

if (local_work_queue) {

local_work_queue->push(std::move(task));

} else {

pool_work_queue.push(std::move(task));

}

return res;

}

void run_pending_task() {

task_type task;

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Энтони Уильямс читать все книги автора по порядку

Энтони Уильямс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Параллельное программирование на С++ в действии. Практика разработки многопоточных программ отзывы


Отзывы читателей о книге Параллельное программирование на С++ в действии. Практика разработки многопоточных программ, автор: Энтони Уильямс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x