Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ

Тут можно читать онлайн Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-programming, издательство ДМК Пресс, год 2012. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Параллельное программирование на С++ в действии. Практика разработки многопоточных программ
  • Автор:
  • Жанр:
  • Издательство:
    ДМК Пресс
  • Год:
    2012
  • Город:
    Москва
  • ISBN:
    978-5-94074-448-1
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ краткое содержание

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - описание и краткое содержание, автор Энтони Уильямс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В наши дни компьютеры с несколькими многоядерными процессорами стали нормой. Стандарт С++11 языка С++ предоставляет развитую поддержку многопоточности в приложениях. Поэтому, чтобы сохранять конкурентоспособность, вы должны овладеть принципами и приемами их разработки, а также новыми средствами языка, относящимися к параллелизму.
Книга «Параллельное программирование на С++ в действии» не предполагает предварительных знаний в этой области. Вдумчиво читая ее, вы научитесь писать надежные и элегантные многопоточные программы на С++11. Вы узнаете о том, что такое потоковая модель памяти, и о том, какие средства поддержки многопоточности, в том числе запуска и синхронизации потоков, имеются в стандартной библиотеке. Попутно вы познакомитесь с различными нетривиальными проблемами программирования в условиях параллелизма.

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - читать онлайн бесплатно полную версию (весь текст целиком)

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - читать книгу онлайн бесплатно, автор Энтони Уильямс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Листинг 3.11.Потокобезопасная отложенная инициализация с помощью мьютекса

std::shared_ptr resource_ptr;

std::mutex resource_mutex; ←┐ В этой точке все потоки

сериализуются

void foo() {

std::unique_lock lk(resource_mutex);

if (!resource_ptr) {

resource_ptr.reset(new some_resource); ←┐ в защите нуж-

} │ дается только

lk.unlock(); │ инициализация

resource_ptr->do_something();

}

Этот код встречается настолько часто, а ненужная сериализация вызывает столько проблем, что многие предпринимали попытки найти более приемлемое решение, в том числе печально известный паттерн блокировка с двойной проверкой (Double-Checked Locking): сначала указатель читается без захвата мьютекса (1)(см. код ниже), а захват производится, только если оказалось, что указатель равен NULL. Затем, когда мьютекс захвачен (2), указатель проверяется еще раз (отсюда и слова «двойная проверка») на случай, если какой-то другой поток уже выполнил инициализацию в промежутке между первой проверкой и захватом мьютекса:

void undefined_behaviour_with_double_checked_locking() {

if (!resource_ptr) ← (1)

{

std::lock_guard lk(resource_mutex);

if (!resource_ptr) ← (2)

{

resource_ptr.reset(new some_resource);← (3)

}

}

resource_ptr->do_something(); ← (4)

}

«Печально известным» я назвал этот паттерн не без причины: он открывает возможность для крайне неприятного состояния гонки, потому что чтение без мьютекса (1)не синхронизировано с записью в другом потоке с уже захваченным мьютексом (3). Таким образом, возникает гонка, угрожающая не самому указателю, а объекту, на который он указывает; даже если один поток видит, что указатель инициализирован другим потоком, он может не увидеть вновь созданного объекта some_resource, и, следовательно, вызов do_something() (4)будет применен не к тому объекту, что нужно. Такого рода гонка в стандарте С++ называется гонкой за данными ( data race ), она отнесена к категории неопределенного поведения .

Комитет по стандартизации С++ счел этот случай достаточно важным, поэтому в стандартную библиотеку включен класс std::once_flagи шаблон функции std::call_once. Вместо того чтобы захватывать мьютекс и явно проверять указатель, каждый поток может просто вызвать функцию std::call_once, твердо зная, что к моменту возврата из нее указатель уже инициализирован каким-то потоком (без нарушения синхронизации). Обычно издержки, сопряженные с использованием std::call_once, ниже, чем при явном применении мьютекса, поэтому такое решение следует предпочесть во всех случаях, когда оно не противоречит требованиям задачи. В примере ниже код из листинга 3.11 переписан с использованием std::call_once. В данном случае инициализация производится путем вызова функции, но ничто не мешает завести для той же цели класс, в котором определен оператор вызова. Как и большинство функций в стандартной библиотеке, принимающих в качестве аргументов функции или предикаты, std::call_onceработает как с функциями, так и с объектами, допускающими вызов.

std::shared_ptr resource_ptr;

std::once_flag resource_flag;← (1)

void init_resource() {

resource_ptr.reset(new some_resource);

}

Инициализация производится

void foo() { ←┘ ровно один раз

std::call_once(resource_flag, init_resource);

resource_ptr->do_something();

}

Здесь переменная типа std::once_flag (1)и инициализируемый объект определены в области видимости пространства имен, но std::call_once()вполне можно использовать и для отложенной инициализации членов класса, как показано в следующем листинге.

Листинг 3.12.Потокобезопасная отложенная инициализация члена класса с помощью функции std::call_once()

class X {

private:

connection_infо connection_details;

connection_handle connection;

std::once_flag connection_init_flag;

void open_connection() {

connection = connection_manager.open(connection_details);

}

public:

X(connection_info const& connection_details_):

connection_details(connection_details_) {}

void send_data(data_packet const& data)← (1)

{

std::call_once(

connection_init_flag, &X::open_connection, this);←┐

connection.send_data(data); │

} │

data_packet receive_data() { ← (3)

std::call_once( │

connection_init_flag, &X::open_connection, 2) (2)

this); ←┘

return connection.receive_data();

}

};

В этом примере инициализация производится либо при первом обращении к send_data() (1), либо при первом обращении к receive_data() (3). Поскольку данные инициализируются функцией-членом open_connection(), то требуется передавать также указатель this. Как и во всех функциях из стандартной библиотеки, которые принимают объекты, допускающие вызов, (например, конструктор std::threadи функция std::bind()), это делается путем передачи std::call_once()дополнительного аргумента (2).

Следует отметить, что, как и в случае std:mutex, объекты типа std::once_flagнельзя ни копировать, ни перемещать, поэтому, если вы собираетесь использовать их как члены классы, то соответствующие конструкторы придется определить явно (если это необходимо).

Возможность гонки при инициализации возникает, в частности, при объявлении локальной переменной с классом памяти static. По определению, инициализация такой переменной происходит, когда поток управления программы первый раз проходит через ее объявление. Но если функция вызывается в нескольких потоках, то появляется потенциальная возможность гонки за то, кто определит переменную первым. Во многих компиляторах, выпущенных до утверждения стандарта С++11, эта гонка действительно приводит к проблемам, потому что любой из нескольких потоков, полагая, что успел первым, может попытаться инициализировать переменную. Может также случиться, что некоторый поток попытается использовать переменную после того, как инициализация началась в другом потоке, но до того, как она закончилась. В С++11 эта проблема решена: по определению, инициализация производится ровно в одном потоке, и никакому другому потоку не разрешено продолжать выполнение, пока инициализация не завершится, поэтому потоки конкурируют лишь за право выполнить инициализацию первым, ничего более серьёзного случиться не может. Это свойство можно использовать как альтернативу функции std::call_once, когда речь идет об инициализации единственной глобальной переменной:

class my_class;

my_class& get_my_class_instance() {

static my_class instance; ←┐ Гарантируется, что инициализация

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Энтони Уильямс читать все книги автора по порядку

Энтони Уильямс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Параллельное программирование на С++ в действии. Практика разработки многопоточных программ отзывы


Отзывы читателей о книге Параллельное программирование на С++ в действии. Практика разработки многопоточных программ, автор: Энтони Уильямс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x