Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ

Тут можно читать онлайн Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-programming, издательство ДМК Пресс, год 2012. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Параллельное программирование на С++ в действии. Практика разработки многопоточных программ
  • Автор:
  • Жанр:
  • Издательство:
    ДМК Пресс
  • Год:
    2012
  • Город:
    Москва
  • ISBN:
    978-5-94074-448-1
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ краткое содержание

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - описание и краткое содержание, автор Энтони Уильямс, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В наши дни компьютеры с несколькими многоядерными процессорами стали нормой. Стандарт С++11 языка С++ предоставляет развитую поддержку многопоточности в приложениях. Поэтому, чтобы сохранять конкурентоспособность, вы должны овладеть принципами и приемами их разработки, а также новыми средствами языка, относящимися к параллелизму.
Книга «Параллельное программирование на С++ в действии» не предполагает предварительных знаний в этой области. Вдумчиво читая ее, вы научитесь писать надежные и элегантные многопоточные программы на С++11. Вы узнаете о том, что такое потоковая модель памяти, и о том, какие средства поддержки многопоточности, в том числе запуска и синхронизации потоков, имеются в стандартной библиотеке. Попутно вы познакомитесь с различными нетривиальными проблемами программирования в условиях параллелизма.

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - читать онлайн бесплатно полную версию (весь текст целиком)

Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - читать книгу онлайн бесплатно, автор Энтони Уильямс
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

На этом примере демонстрируется еще один момент — использование шаблона std::lock_guard<>, конкретизированного определенным пользователем типом мьютекса. Тип hierarchical_mutexне определен в стандарте, но написать его несложно — простая реализация приведена в листинге 3.8. Хотя этот тип определен пользователем, его можно употреблять совместно с std::lock_guard<>, потому что в нем имеются все три функции-члена, необходимые для удовлетворения требований концепции мьютекса: lock(), unlock()и try_lock(). Мы еще не видели, как используется функция t ry_lock(), но ничего хитрого в ней нет — если мьютекс захвачен другим потоком, то функция сразу возвращает false, а не блокирует вызывающий поток в ожидании освобождения мьютекса. Она может вызываться также из функции std::lock()для реализации алгоритма предотвращения взаимоблокировок.

Листинг 3.8.Простая реализация иерархического мьютекса

class hierarchical_mutex {

std::mutex internal_mutex;

unsigned long const hierarchy_value;

unsigned previous_hierarchy_value;

static thread_local

unsigned long this_thread_hierarchy_value;← (1)

void check_for_hierarchy_violation() {

if (this_thread_hierarchy_value <= hierarchy_value) ← (2)

{

throw std::logic_error("mutex hierarchy violated");

}

}

void update_hierarchy_value() {

previous_hierarchy_value = this_thread_hierarchy_value; ← (3)

this_thread_hierarchy_value = hierarchy_value;

}

public:

explicit hierarchical_mutex(unsigned long value):

hierarchy_value(value),

previous_hierarchy_value(0) {}

void lock() {

check_for_hierarchy_violation();

internal_mutex.lock(); ← (4)

update_hierarchy_value(); ← (5)

}

void unlock() {

this_thread_hierarchy_value = previous_hierarchy_value; ← (6)

internal_mutex.unlock();

}

bool try_lock() {

check_for_hierarchy_violation();

if (!internal_mutex.try_lock()) ← (7)

return false;

update_hierarchy_value();

return true;

}

};

thread_local unsigned long

hierarchical_mutex::this_thread_hierarchy_value(ULONG_MAX);← (8)

Главное здесь — использование значения типа thread_localдля представления уровня иерархии в текущем потоке, this_thread_hierarchy_value (1). Оно инициализируется максимально возможным значением (8), так что в начальный момент можно захватить любой мьютекс. Поскольку переменная имеет тип thread_local, то в каждом потоке хранится отдельная ее копия, то есть состояние этой переменной в одном потоке не зависит от ее состояния в любом другом. Дополнительные сведения о thread_localсм. в разделе А.8 приложения А.

Итак, при первом захвате потоком объекта hierarchical_mutexзначение this_thread_hierarchy_valueв нем будет равно ULONG_MAX. Это число по определению больше любого другого представимого в программе, потому проверка в функции check_for_hierarchy_violation() (2)проходит. Раз так, то функция lock()просто захватывает внутренний мьютекс (4). Успешно выполнив эту операцию, мы можем изменить значение уровня иерархии (5).

Если теперь попытаться захватить другой объект hierarchical_mutex, не освободив первый, то в переменной this_thread_hierarchy_valueбудет находиться уровень иерархии первого мьютекса. Чтобы проверка (2)завершилась успешно, уровень иерархии второго мьютекса должен быть меньше уровня уже удерживаемого.

Теперь мы должны сохранить предыдущее значение уровня иерархии в текущем потоке, чтобы его можно было восстановить в функции unlock() (6). В противном случае нам больше никогда не удалось бы захватить мьютекс с более высоким уровнем иерархии, даже если поток не удерживает ни одного мьютекса. Поскольку мы сохраняем предыдущий уровень иерархии только в случае, когда удерживаем internal_mutex (3), и восстанавливаем его перед тем, как освободить этот внутренний мьютекс (6), то можем безопасно сохранить его в самом объекте hierarchical_mutex, где его защищает захваченный внутренний мьютекс.

Функция try_lock()работает так же, как lock(), с одним отличием — если вызов try_lock()для internal_mutexзавершается ошибкой (7), то мы не владеем мьютексом и, следовательно, не изменяем уровень иерархии, а вместо trueвозвращаем false.

Все проверки производятся на этапе выполнения, но, по крайней мере, они не зависят от времени — нет нужды дожидаться, пока сложатся редкие условия, при которых возникает взаимоблокировка. Кроме того, ход мыслей проектировщика, направленный на подобное отделение логики приложения от мьютексов, помогает предотвратить многие возможные причины взаимоблокировок еще до того, как они прокрадутся в код. Такое мысленное упражнение полезно проделать даже в том случае, когда проектировщик не собирается фактически кодировать проверки во время выполнения.

Применение данных рекомендаций не ограничивается блокировками

Я уже упоминал в начале этого раздела, что взаимоблокировка может возникать не только вследствие захвата мьютекса, а вообще в любой конструкции синхронизации, сопровождающейся циклом ожидания. Поэтому стоит обобщить приведенные выше рекомендации и на такие случаи. Например, мы говорили, что следует по возможности избегать вложенных блокировок, и точно так же не рекомендуется ждать поток, удерживая мьютекс, потому что этому потоку может потребоваться тот же самый мьютекс для продолжения работы. Аналогично, если вы собираетесь ждать завершения потока, то будет разумно определить иерархию потоков, так чтобы любой поток мог ждать только завершения потоков, находящихся ниже него в иерархии. Простой способ реализовать эту идею — сделать так, чтобы присоединение потоков происходило в той же функции, которая их запускала (как описано в разделах 3.1.2 и 3.3).

Функция std::lock()и шаблон класса std::lock_guardпокрывают большую часть простых случаев блокировки, по иногда этого недостаточно. Поэтому в стандартную библиотеку включен также шаблон std::unique_lock. Подобно std::lock_guard, этот шаблон класса параметризован типом мьютекса и реализует такое же управление блокировками в духе RAII, что и std::lock_guard, однако обладает чуть большей гибкостью.

3.2.6. Гибкая блокировка с помощью std::unique_lock

Шаблон std::unique_lockобладает большей гибкостью, чем std::lock_guard, потому что несколько ослабляет инварианты — экземпляр std::unique_lockне обязан владеть ассоциированным с ним мьютексом. Прежде всего, в качестве второго аргумента конструктору можно передавать не только объект std::adopt_lock, заставляющий объект управлять захватом мьютекса, но и объект std::defer_lock, означающий, что в момент конструирования мьютекс не должен захватываться. Захватить его можно будет позже, вызвав функцию-член lock()объекта std::unique_lockне самого мьютекса) или передав функции std::lock()сам объект std::unique_lock. Код в листинге 3.6 можно было бы с тем же успехом написать, как показало в листинге 3.9, с применением std::unique_lockи std::defer_lock() (1)вместо std::lock_guardи std::adopt_lock. В новом варианте столько же строк, и он эквивалентен исходному во всем, кроме одной детали, — std::unique_lockпотребляет больше памяти и выполняется чуть дольше, чем std::lock_guard. Та гибкость, которую мы получаем, разрешая экземпляру std::unique_lock не владеть мьютексом, обходится не бесплатно — дополнительную информацию надо где-то хранить и обновлять.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Энтони Уильямс читать все книги автора по порядку

Энтони Уильямс - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Параллельное программирование на С++ в действии. Практика разработки многопоточных программ отзывы


Отзывы читателей о книге Параллельное программирование на С++ в действии. Практика разработки многопоточных программ, автор: Энтони Уильямс. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x