Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ
- Название:Параллельное программирование на С++ в действии. Практика разработки многопоточных программ
- Автор:
- Жанр:
- Издательство:ДМК Пресс
- Год:2012
- Город:Москва
- ISBN:978-5-94074-448-1
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Энтони Уильямс - Параллельное программирование на С++ в действии. Практика разработки многопоточных программ краткое содержание
Книга «Параллельное программирование на С++ в действии» не предполагает предварительных знаний в этой области. Вдумчиво читая ее, вы научитесь писать надежные и элегантные многопоточные программы на С++11. Вы узнаете о том, что такое потоковая модель памяти, и о том, какие средства поддержки многопоточности, в том числе запуска и синхронизации потоков, имеются в стандартной библиотеке. Попутно вы познакомитесь с различными нетривиальными проблемами программирования в условиях параллелизма.
Параллельное программирование на С++ в действии. Практика разработки многопоточных программ - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Проектирование свободных от блокировок структур данных — сложная задача, при решении которой легко допустить ошибки, зато такие структуры обладают свойствами масштабируемости, незаменимыми в некоторых ситуациях. Надеюсь, что, проработав приведенные в этой главе примеры и ознакомившись с рекомендациями, вы будете лучше подготовлены к разработке собственных структур данных без блокировок, реализации алгоритмов, описанных в научных статьях, или к поиску ошибок, допущенных бывшим сотрудником компании.
Во всех случаях, когда некоторые данные разделяются между потоками, нужно задумываться о применяемых структурах данных и о синхронизации. Проектируя структуры данных с учетом параллелизма, вы сможете инкапсулировать ответственность в самой структуре, позволив основной программе сосредоточиться на решаемой задаче, а не на синхронизации доступа к данным. Этот подход будет продемонстрирован в главе 8, где мы перейдём от параллельных структур данных к написанию параллельных программ. В параллельных алгоритмах для повышения производительности используется несколько потоков, и выбор подходящей параллельной структуры данных приобретает решающее значение.
Глава 8.
Проектирование параллельных программ
■ Методы распределения данных между потоками.
■ Факторы, влияющие на производительность параллельного кода.
■ Как от этих факторов зависит дизайн параллельных структур данных.
■ Безопасность многопоточного кода относительно исключений.
■ Масштабируемость.
■ Примеры реализации параллельных алгоритмов.
В предыдущих главах мы в основном занимались появившимися в новом стандарте C++11 средствами для написания параллельных программ. В главах 6 и 7 мы видели, как эти средства применяются для проектирования простых структур данных, безопасных относительно доступа из нескольких потоков. Но как столяру недостаточно знать, как устроена петля или шарнир, чтобы смастерить шкаф или стол, так и для проектирования параллельных программ недостаточно знакомства с устройством и применением простых структур данных. Теперь мы будем рассматривать проблему в более широком контексте и научимся строить более крупные узлы, способные выполнять полезную работу В качестве примеров я возьму многопоточные реализации некоторых алгоритмов из стандартной библиотеки С++, но те же самые принципы остаются в силе при разработке всех уровней приложения.
Как и в любом программном проекте, тщательное продумывание структуры параллельного кода имеет первостепенное значение. Однако в параллельной программе приходится учитывать еще больше факторов, чем в последовательной. Нужно принимать во внимание не только инкапсуляцию, связанность и сцепленность (эти вопросы подробно рассматриваются во многих книгах по проектированию программного обеспечения), но и то, какие данные разделять, как организовывать доступ к ним, каким потокам придётся ждать других потоков для завершения операции и т.д.
Именно этим мы и будем заниматься в этой главе, начав с высокоуровневых (но фундаментальных) вопросов о том, сколько создавать потоков, какой код выполнять в каждом потоке и как многопоточность влияет на понятность программы, и закончив низкоуровневыми деталями того, как организовать разделяемые данные для достижения оптимальной производительности.
Начнем с методов распределения работы между потоками.
8.1. Методы распределения работы между потоками
Представьте, что вам поручили построить дом. Для этого предстоит вырыть котлован под фундамент, возвести стены, провести водопровод и электропроводку и т.д. Теоретически, имея достаточную подготовку, все это можно сделать и в одиночку, по времени уйдет много и придётся постоянно переключаться с одного занятия на другое. Можно вместо этого нанять несколько помощников. Тогда нужно решить, сколько людей нанимать и каких специальностей. К примеру, пригласить двух универсалов и всё делать совместно. По-прежнему нужно будет переходить от одной работы к другой, но в итоге строительство удастся завершить быстрее, так как теперь в нем принимает участие больше народу
Есть и другой путь — нанять бригаду узких специалистов: каменщика, плотника, электрика, водопроводчика и других. Специалисты делают то, что лучше всего умеют, так что если прокладывать трубы не надо, то водопроводчик попивает чаёк. Работа все равно продвигается быстрее, так как занято больше людей, — водопроводчик может заниматься туалетом, пока электрик делает проводку на кухне, но зато когда для конкретного специалиста работы нет, он простаивает. Впрочем, несмотря на простои, специалисты, скорее всего, справятся быстрее, чем бригада мастеров на все руки. Им не нужно менять инструменты, да и свое дело они по идее должны делать быстрее, чем универсалы. Так ли это на самом деле, зависит от разных обстоятельств — нет другого пути, как взять и попробовать.
Но и специалистов можно нанять много или мало. Наверное, имеет смысл нанимать больше каменщиков, чем электриков. Кроме того, состав бригады и ее общая эффективность могут измениться, если предстоит построить несколько домов. Если в одном доме у водопроводчика мало работы, то на строительстве нескольких его можно занять полностью. Наконец, если вы не обязаны платить специалистам за простой, то можно позволить себе нанять больше людей, пусть даже в каждый момент времени работать будет столько же, сколько раньше.
Но хватит уже о строительстве, какое отношение всё это имеет к потокам? Да просто к ним применимы те же соображения. Нужно решить, сколько использовать потоков и какие задачи поручить каждому Должны ли потоки быть «универсалами», берущимися за любую подвернувшуюся работу или «специалистами», которые умеют хорошо делать одно дело? Или, быть может, нужно сочетание того и другого? Эти решения необходимо принимать вне зависимости от причин распараллеливания программы и от того, насколько они будут удачны, существенно зависит производительность и ясность кода. Поэтому так важно понимать, какие имеются варианты; тогда решения о структуре приложения будут опираться на знания, а не браться с потолка. В этом разделе мы рассмотрим несколько методов распределения задач и начнем с распределения данных между потоками.
8.1.1. Распределение данных между потоками до начала обработки
Легче всего распараллеливаются такие простые алгоритмы, как std::for_each
, которые производят некоторую операцию над каждым элементом набора данных. Чтобы распараллелить такой алгоритм, можно назначить каждому элементу один из обрабатывающих потоков. Каким образом распределить элементы для достижения оптимальной производительности, зависит от деталей структуры данных, как мы убедимся ниже в этой главе.
Интервал:
Закладка: