Миран Липовача - Изучай Haskell во имя добра!

Тут можно читать онлайн Миран Липовача - Изучай Haskell во имя добра! - бесплатно ознакомительный отрывок. Жанр: comp-programming, издательство ДМК Пресс, год 2012. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Изучай Haskell во имя добра!
  • Автор:
  • Жанр:
  • Издательство:
    ДМК Пресс
  • Год:
    2012
  • Город:
    Москва
  • ISBN:
    978-5-94074-749-9
  • Рейтинг:
    3/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Миран Липовача - Изучай Haskell во имя добра! краткое содержание

Изучай Haskell во имя добра! - описание и краткое содержание, автор Миран Липовача, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
На взгляд автора, сущность программирования заключается в решении проблем. Программист всегда думает о проблеме и возможных решениях – либо пишет код для выражения этих решений.
Язык Haskell имеет множество впечатляющих возможностей, но главное его свойство в том, что меняется не только способ написания кода, но и сам способ размышления о проблемах и возможных решениях. Этим Haskell действительно отличается от большинства языков программирования. С его помощью мир можно представить и описать нестандартным образом. И поскольку Haskell предлагает совершенно новые способы размышления о проблемах, изучение этого языка может изменить и стиль программирования на всех прочих.
Ещё одно необычное свойство Haskell состоит в том, что в этом языке придаётся особое значение рассуждениям о типах данных. Как следствие, вы помещаете больше внимания и меньше кода в ваши программы.
Вне зависимости от того, в каком направлении вы намерены двигаться, путешествуя в мире программирования, небольшой заход в страну Haskell себя оправдает. А если вы решите там остаться, то наверняка найдёте чем заняться и чему поучиться!
Эта книга поможет многим читателям найти свой путь к Haskell.
Отображения, монады, моноиды и другое! Всё сказано в названии: «Изучай Хаскель во имя добра!» – весёлый иллюстрированный самоучитель по этому сложному функциональному языку.
С помощью оригинальных рисунков автора, отсылке к поп-культуре, и, самое главное, благодаря полезным примерам кода, эта книга обучает основам функционального программирования так, как вы никогда не смогли бы себе представить.
Вы начнете изучение с простого материала: основы синтаксиса, рекурсия, типы и классы типов. Затем, когда вы преуспеете в основах, начнется настоящий мастер-класс от профессионала: вы изучите, как использовать аппликативные функторы, монады, застежки, и другие легендарные конструкции Хаскеля, о которых вы читали только в сказках.
Продираясь сквозь образные (и порой безумные) примеры автора, вы научитесь:
• Смеяться в лицо побочным эффектам, поскольку вы овладеете техниками чистого функционального программирования.
• Использовать волшебство «ленивости» Хаскеля для игры с бесконечными наборами данных.
• Организовывать свои программы, создавая собственные типы, классы типов и модули.
• Использовать элегантную систему ввода-вывода Хаскеля, чтобы делиться гениальностью ваших программ с окружающим миром.
Нет лучшего способа изучить этот мощный язык, чем чтение «Изучай Хаскель во имя добра!», кроме, разве что, поедания мозга его создателей. Миран Липовача (Miran Lipovača) изучает информатику в Любляне (Словения). Помимо его любви к Хаскелю, ему нравится заниматься боксом, играть на бас-гитаре и, конечно же, рисовать. У него есть увлечение танцующими скелетами и числом 71, а когда он проходит через автоматические двери, он притворяется, что на самом деле открывает их силой своей мысли.

Изучай Haskell во имя добра! - читать онлайн бесплатно ознакомительный отрывок

Изучай Haskell во имя добра! - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Миран Липовача
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Just [3,2,1]

ghci> sequenceA [Just 3, Nothing, Just 1]

Nothing

ghci> sequenceA [(+3),(+2),(+1)] 3

[6,5,4]

ghci> sequenceA [[1,2,3],[4,5,6]]

[[1,4],[1,5],[1,6],[2,4],[2,5],[2,6],[3,4],[3,5],[3,6]]

ghci> sequenceA [[1,2,3],[4,5,6],[3,4,4],[]]

[]

При использовании со значениями типа Maybeфункция sequenceAсоздаёт значение типа Maybe, содержащее все результаты в виде списка. Если одно из значений равно Nothing, результатом тоже является Nothing. Это просто расчудесно, когда у вас есть список значений типа Maybeи вы заинтересованы в значениях, только когда ни одно из них не равно Nothing!

В применении к функциям sequenceAпринимает список функций и возвращает функцию, которая возвращает список. В нашем примере мы создали функцию, которая приняла число в качестве параметра и применила его к каждой функции в списке, а затем вернула список результатов. Функция sequenceA [(+3),(+2),(+1)] 3вызовет функцию (+3)с параметром 3, (+2)– с параметром 3и (+1)– с параметром 3и вернёт все эти результаты в виде списка.

Выполнение выражения (+) <$> (+3) <*> (*2)создаст функцию, которая принимает параметр, передаёт его и функции (+3)и (*2), а затем вызывает оператор +с этими двумя результатами. Соответственно, есть смысл в том, что выражение sequenceA [(+3),(*2)]создаёт функцию, которая принимает параметр и передаёт его всем функциям в списке. Вместо вызова оператора +с результатами функций используется сочетание :и pure []для накопления этих результатов в список, который является результатом этой функции.

Использование функции sequenceAполезно, когда у нас есть список функций и мы хотим передать им всем один и тот же ввод, а затем просмотреть список результатов. Например, у нас есть число и нам интересно, удовлетворяет ли оно всем предикатам в списке. Вот один из способов это сделать:

ghci> map (\f –> f 7) [(>4),(<10),odd]

[True,True,True]

ghci> and $ map (\f –> f 7) [(>4),(<10),odd]

True

Вспомните, что функция andпринимает список значений типа Boolи возвращает значение True, если все они равны True. Ещё один способ достичь такого же результата – применение функции sequenceA:

ghci> sequenceA [(>4),(<10),odd] 7

[True,True,True]

ghci> and $ sequenceA [(>4),(<10),odd] 7

True

Выражение sequenceA [(>4),(<10),odd]создаёт функцию, которая примет число, передаст его всем предикатам в списке [(>4),(<10),odd]и вернёт список булевых значений. Она превращает список с типом (Num a) => [a –> Bool]в функцию с типом (Num a) => a –> [Bool]. Правда, клёво, а?

Поскольку списки однородны, все функции в списке должны быть одного и того же типа, конечно же. Вы не можете получить список вроде [ord, (+3)], потому что функция ordпринимает символ и возвращает число, тогда как функция (+3)принимает число и возвращает число.

При использовании со значением []функция sequenceAпринимает список списков и возвращает список списков. На самом деле она создаёт списки, которые содержат все комбинации находящихся в них элементов. Проиллюстрируем это предыдущим примером, который выполнен с применением функции sequenceA, а затем с помощью генератора списков:

ghci> sequenceA [[1,2,3],[4,5,6]]

[[1,4],[1,5],[1,6],[2,4],[2,5],[2,6],[3,4],[3,5],[3,6]]

ghci> [[x,y] | x <���– [1,2,3], y <���– [4,5,6]]

[[1,4],[1,5],[1,6],[2,4],[2,5],[2,6],[3,4],[3,5],[3,6]]

ghci> sequenceA [[1,2],[3,4]]

[[1,3],[1,4],[2,3],[2,4]]

ghci> [[x,y] | x <���– [1,2], y <���– [3,4]]

[[1,3],[1,4],[2,3],[2,4]]

ghci> sequenceA [[1,2],[3,4],[5,6]]

[[1,3,5],[1,3,6],[1,4,5],[1,4,6],[2,3,5],[2,3,6],[2,4,5],[2,4,6]]

ghci> [[x,y,z] | x <���– [1,2], y <���– [3,4], z <���– [5,6]]

[[1,3,5],[1,3,6],[1,4,5],[1,4,6],[2,3,5],[2,3,6],[2,4,5],[2,4,6]]

Выражение (+) <$> [1,2] <*> [4,5,6]возвращает в результате недетерминированное вычисление x + y, где образец xпринимает каждое значение из [1,2], а yпринимает каждое значение из [4,5,6]. Мы представляем это в виде списка, который содержит все возможные результаты. Аналогичным образом, когда мы выполняем выражение sequenceA [[1,2],[3,4],[5,6]], результатом является недетерминированное вычисление [x,y,z], где образец xпринимает каждое значение из [1,2], а y– каждое значение из [3,4]и т. д. Для представления результата этого недетерминированного вычисления мы используем список, где каждый элемент в списке является одним возможным списком. Вот почему результатом является список списков.

При использовании с действиями ввода-вывода функция sequenceAпредставляет собой то же самое, что и функция sequence! Она принимает список действий ввода-вывода и возвращает действие ввода-вывода, которое выполнит каждое из этих действий и в качестве своего результата будет содержать список результатов этих действий ввода-вывода. Так происходит, потому что чтобы превратить значение [IO a]в значение IO [a], чтобы создать действие ввода-вывода, возвращающее список результатов при выполнении, все эти действия ввода-вывода должны быть помещены в последовательность, а затем быть выполненными одно за другим, когда потребуется результат выполнения. Вы не можете получить результат действия ввода-вывода, не выполнив его!

Давайте поместим три действия ввода-вывода getLineв последовательность:

ghci> sequenceA [getLine, getLine, getLine]

эй

хо

ух

["эй","хо","ух"]

В заключение отмечу, что аппликативные функторы не просто интересны, но и полезны. Они позволяют нам объединять разные вычисления – как, например, вычисления с использованием ввода-вывода, недетерминированные вычисления, вычисления, которые могли окончиться неуспешно, и т. д., – используя аппликативный стиль. Просто с помощью операторов <$>и <*>мы можем применять обычные функции, чтобы единообразно работать с любым количеством аппликативных функторов и использовать преимущества семантики каждого из них.

12

Моноиды

В этой главе представлен ещё один полезный и интересный класс типов Monoid. Он существует для типов, значения которых могут быть объединены при помощи бинарной операции. Мы рассмотрим, что именно представляют собой моноиды и что утверждают их законы. Затем рассмотрим некоторые моноиды в языке Haskell и обсудим, как они могут нам пригодиться.

И прежде всего давайте взглянем на ключевое слово newtype: мы будем часто его использовать, когда углубимся в удивительный мир моноидов.

Оборачивание существующего типа в новый тип

Пока что вы научились создавать свои алгебраические типы данных, используя ключевое слово data. Вы также увидели, как можно давать синонимы имеющимся типам с применением ключевого слова type. В этом разделе мы рассмотрим, как создаются новые типы на основе имеющихся типов данных с использованием ключевого слова newtype. И в первую очередь, конечно, поговорим о том, чем всё это может быть нам полезно.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Миран Липовача читать все книги автора по порядку

Миран Липовача - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Изучай Haskell во имя добра! отзывы


Отзывы читателей о книге Изучай Haskell во имя добра!, автор: Миран Липовача. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x