Виталий Ткаченко - Обратные вызовы в C++
- Название:Обратные вызовы в C++
- Автор:
- Жанр:
- Издательство:Array SelfPub.ru
- Год:2021
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Виталий Ткаченко - Обратные вызовы в C++ краткое содержание
Обратные вызовы в C++ - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Безопасность . При настройке в инициаторе создается копия переданного функционального объекта. Исходный экземпляр становится ненужным, его можно безопасно удалить.
Отсутствие трансляции контекста . Код вызова хранится внутри перегруженного оператора, контекст инкапсулирован внутри класса вместе с кодом.
Общий функциональный объект . Инициатор и исполнитель связаны через единый функциональный объект, они оба должны видеть его объявление. Вся логика обработки реализуется внутри объекта. Это приводит к монолитной архитектуре, что сильно затрудняет модификацию поведения обработчика. По сути дела, исполнитель встраивается в инициатор и становится его составной частью 9 9 Частично этот недостаток устраняется с помощью шаблонов, что будет рассматриваться в соответствующем разделе.
.
Невозможность реализации API . Следствие монолитной архитектуры: использование API предполагает возможность модификации поведения исполнителя без изменения кода инициатора. Поскольку они оба связаны через единый объект, выполнение указанного требования является нереализуемым.
Высокое быстродействие . А вот здесь недостатки монолитной архитектуры превращаются в достоинства. Дело в том, что поскольку инициатор сохраняет у себя объект, он имеет доступ к коду перегруженного оператора, т. е. к коду обработчика вызова. Как следствие, оптимизирующий компилятор получает возможность встроить код обработчика непосредственно в точку вызова, опуская вызов функции (перегруженный оператор тоже является функцией), что значительно ускоряет выполнение вызова. Рассмотрим этот момент подробнее.
2.4.6. Производительность
С точки зрения машинных команд, вызов функции – не слишком быстрая операция. Необходимо несколько команд для сохранения стека 10 10 Количество таких команд зависит от количества входных параметров функции.
; команда перехода к коду функции; команда возврата управления; несколько команд для восстановления стека. А если код тела функции небольшой, к примеру, всего лишь сравнение двух величин, то время, затраченное на вызов функции, может значительно превысить время выполнения кода функции.
Поясним сказанное на примере. Напишем маленькую простую программу, которая считывает из консоли два числа, складывает их и результат выводит на экран (Листинг 19).
#include
int Calculate(int a, int b)
{
return a + b;
}
int main()
{
int a, b;
std::cin >> a >> b;
int result = Calculate(a, b);
std::cout << result;
}
Откомпилируем код с выключенной оптимизацией и запустим на выполнение. Посмотрим дизассемблерный участок кода 11 11 Этот код получен с помощью компилятора Microsoft Visual studio версии 19.23.28106.4. Другие компиляторы могут генерировать отличающийся код, но принцип останется прежним.
, в котором производится вызов функции (Листинг 20):
int Calculate(int a, int b)
{
00007FF6DA741005 and al,8 // 1
return a + b;
00007FF6DA741008 mov eax,dword ptr [b] // 2
00007FF6DA74100C mov ecx,dword ptr [a] // 3
00007FF6DA741010 add ecx,eax // 4
00007FF6DA741012 mov eax,ecx // 5
}
00007FF6DA741014 ret // 6
int main()
{
…….
int result = Calculate(a, b);
00007FF6DA741053 mov edx,dword ptr [b] // 7
00007FF6DA741057 mov ecx,dword ptr [a] // 8
00007FF6DA74105B call Calculate (07FF6DA741000h) // 9
00007FF6DA741060 mov dword ptr [result],eax // 10
…….
В строках 7 и 8 введенные значения a и b сохраняются в регистрах. В строке 9 выполняется вызов функции. В строке 1 выполняется обнуление результата, в строках 2 и 3 переданные значения копируются в регистры, в строке 4 выполняется сложение, в строке 5 результат копируется обратно в регистр, в строке 6 выполняется выход из функции, в строке 10 результат вычисления функции копируется в переменную результата.
Теперь включим оптимизацию, откомпилируем и посмотрим на код (Листинг 21):
int main()
{
…….
int result = Calculate(a, b);
00007FF7D5B11033 mov edx,dword ptr [b]
00007FF7D5B11037 add edx,dword ptr [a]
Как видим, для вычислений у нас всего две операции: запись в регистр значения b и добавление к нему значения a. Код встроен в поток выполнения, вызов функции не производится. Ощутимая разница, не правда ли?
2.5. Лямбда-выражение
2.5.1. Концепция
Лямбда-выражение 12 12 В литературе можно встретить термин «лямбда-функция», но в стандарте С++ он именуется как “lambda-expression”, что в переводе означает «лямбда-выражение».
– это локальная неименованная функция, которая, подобно обычной функции, может принимать входные параметры и возвращать результат. Особенностью лямбда-выражений, отличающих их от обычных функций, является возможность захвата переменных.
Графическое изображение обратного вызова с помощью лямбда-выражения представлено на Рис. 15. Исполнитель реализуется в виде какой-либо исполняемой функции, в качестве которой могут выступать глобальная функция, статический метод класса, метод-член класса, перегруженный оператор. Код обратного вызова упаковывается в лямбда-выражение, в качестве контекста выступают захваченные переменные. При настройке лямбда-выражение как аргумент сохраняется в инициаторе. Инициатор осуществляет обратный вызов посредством вызова хранимого выражения, передавая ему требуемую информацию. Контекст здесь передавать не нужно, поскольку внутри тела лямбда-выражения доступны все захваченные переменные.

Рис. 15. Реализация обратного вызова с помощью лямбда-выражения
2.5.2. Инициатор
Как хранить и передавать лямбда-выражение как аргумент? Если оно не захватывает переменные, то стандарт допускает неявное преобразование лямбда-выражения к указателю на функцию. В этом случае реализация инициатора полностью совпадает с рассмотренной в 2.1. Однако использование лямбда-выражений без захвата переменных не дает никакого преимущества по сравнению с обычной функцией, использовать их в таком виде не имеет смысла.
Другое дело, когда лямбда-выражение осуществляет захват переменных, в этом случае мы получаем мощный и гибкий инструмент управления контекстом. Однако использование таких выражений в качестве аргумента вызывает определенные сложности. Связано это с тем, что тип лямбда-выражения является анонимным. Как следствие, имя типа нам неизвестно, и мы не можем просто объявить переменную нужного типа и присвоить ей лямбда-выражение, как это происходит, например, с указателями или классами. Решается указанная проблема с помощью шаблонов, что будет рассмотрено позже в соответствующих главах. Забегая вперед, отметим, что для хранения лямбда-выражений можно объявлять шаблон с параметром – типом лямбда-выражения (п. 4.4.2) либо использовать специальные классы библиотеки STL (п. 4.6.1).
Читать дальшеИнтервал:
Закладка: