Е. Миркес - Учебное пособие по курсу «Нейроинформатика»

Тут можно читать онлайн Е. Миркес - Учебное пособие по курсу «Нейроинформатика» - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-programming, издательство КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ, год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Учебное пособие по курсу «Нейроинформатика»
  • Автор:
  • Жанр:
  • Издательство:
    КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
  • Год:
    2002
  • Город:
    Красноярск
  • ISBN:
    нет данных
  • Рейтинг:
    4.22/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Е. Миркес - Учебное пособие по курсу «Нейроинформатика» краткое содержание

Учебное пособие по курсу «Нейроинформатика» - описание и краткое содержание, автор Е. Миркес, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Данное учебное пособие подготовлено на основе курса лекций по дисциплине «Нейроинформатика», читавшегося с 1994 года на факультете Информатики и вычислительной техники Красноярского государственного технического университета.

Несколько слов о структуре пособия. Далее во введении приведены учебный план по данному курсу, задания на лабораторные работы. Следующие главы содержат одну или несколько лекций. Материал, приведенный в главах, несколько шире того, что обычно дается на лекциях. В приложения вынесены описания программ, используемых в данном курсе (Clab и Нейроучебник), и проект стандарта нейрокомпьютера, включающий в себя два уровня — уровень запросов компонентов универсального нейрокомпьютера и уровень языков описания отдельных компонентов нейрокомпьютера.

Данное пособие является электронным и включает в себя программы, необходимые для выполнения лабораторных работ.

Учебное пособие по курсу «Нейроинформатика» - читать онлайн бесплатно полную версию (весь текст целиком)

Учебное пособие по курсу «Нейроинформатика» - читать книгу онлайн бесплатно, автор Е. Миркес
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Estim — средняя оценка решения всех примеров обучающего множества.

Назначение — производит обработку всех примеров обучающего множества.

Переменные, используемые при исполнении запроса

InArray, AnsArray, RelArray — адреса массивов для обменов с задачником.

Answers — указатель на массив вычисленных ответов.

Reliability — указатель на массив коэффициентов уверенности сети в ответах.

Back — адрес массива для обменов с оценкой.

Work — рабочая переменная типа Real для подсчета суммарной оценки.

Weight — рабочая переменная типа Real для веса примера.

Описание исполнения.

Если в любой момент исполнения запроса возникает ошибка при исполнении запросов к другим компонентам, то исполнение запроса прекращается, освобождаются все созданные в нем массивы, возвращается значение ложь, ошибка компонента исполнитель не генерируется.

Значение бит NextExample и StopOnEnd в аргументе Instruct игнорируются.

1. Если в аргументе Instruct установлен бит Gradient и не установлен бит Estimate, то выполнение запроса прекращается, и генерируется ошибка 001 — Некорректное сочетание флагов в аргументе Instruct.

2. Если в аргументе Instruct установлен бит Interpret, то создаются массивы Answers и Reliability того же размера, что и Correct

3. Выполняется следующий фрагмент программы (Обнуление массива количеств правильных ответов)

1. For I = 1 To TLong(Correct[0]) Do

2. Correct[I] = 0

4. Обнуляем счетчик числа примеров: Tasks = 0

5. Обнуляем суммарную оценку: Work = 0

6. Переменной Back присваивается значение Null.

7. Присваивает переменной Data значение Null и генерирует запрос к сети GetNetData с аргументами Null, OutSignals, Data. (Получает от сети выходные сигналы, для выяснения размерности массива Data. Сами значения сигналов не нужны)

8. Если в аргументе Instruct установлен бит Gradient, то

1. Генерируется запрос к сети NullGradient с аргументом Null.

2. Создается массив Back того же размера, что и Data.

9. Генерируется запрос к задачнику Home с аргументом Handle. (Переход на начало обучающего множества)

10. Переменной InArray присваивается значение Null и генерируется запрос к задачнику Get с аргументами Handle, InArray, tbPrepared (Создаем массив InArray для получения от задачника предобработанных входных сигналов)

11. Переменной AnsArray присваивается значение Null и генерируется запрос к задачнику Get с аргументами Handle, AnsArray, tbAnswers (Создаем массив AnsArray для получения от задачника правильных ответов)

12. Если в аргументе Instruct установлен бит Estimate, то создается массив RelArray того же размера, что и AnsArray.

13. Генерируется запрос к задачнику Last с аргументом Handle. (Проверка, существует ли пример)

14. Если запрос Last вернул значение ложь, то

1. Tasks = Tasks + 1

2. Генерируется запрос к задачнику Get с аргументами Handle, InArray, tbPrepared (Получает от задачника предобработанные входные сигналы)

3. Генерируется запрос к сети Forw, с аргументами Null, InArray. (Выполняется прямое функционирование сети)

4. Генерирует запрос к сети GetNetData с аргументами Null, OutSignals, Data. (Получает от сети выходные сигналы)

5. Если в аргументе Instruct установлен бит Interpret, то

1. Генерируется запрос к интерпретатору ответа Interpretate с аргументами Data, Answers, Reliability. (Производит интерпретацию ответа)

2. Если в аргументе Instruct установлен бит PutAnswers, то генерируется запрос к задачнику Put с аргументами Handle, Answers, tbCalcAnswers (Передает задачнику вычисленные ответы)

3. Если в аргументе Instruct установлен бит PutReliability, то генерируется запрос к задачнику Put с аргументами Handle, Reliability, tbCalcReliability (Передает задачнику вычисленные коэффициенты уверенности в ответе)

4. Генерируется запрос к задачнику Get с аргументами Handle, AnsArray, tbAnswers (Получает от задачника правильные ответы)

5. Выполняется следующий фрагмент программы (Подсчитываются правильно полученные ответы)

1. For I = 1 To TLong(Correct[0]) Do

2. If Answers[I] = AnsArray[I] Then TLong(Correct[I]) = TLong(Correct[I]) + 1

6. Если в аргументе Instruct установлен бит Estimate, то

1. Если в аргументе Instruct не установлен бит Interpret, то генерируется запрос к задачнику Get с аргументами Handle, AnsArray, tbAnswers (Получает от задачника правильные ответы)

2. Генерируется запрос к задачнику Get с аргументами Handle, RelArray, tbCalcReliability (Получает от задачника достоверности ответов)

3. Генерируется запрос к оценке Estimate с аргументами Data, Back, AnsArray, RelArray, Direv, Estim. Вместо Direv передается ноль, если в аргументе Instruct установлен бит Gradient, и 1 в противном случае. (Вычисляет оценку примера и, возможно, производные)

4. Генерируется запрос к задачнику Get с аргументами Handle, Weight, tbWeight (Получает от задачника вес примера)

5. Work = Work + Estim * Weight (Подсчитываем суммарную оценку)

6. Если в аргументе Instruct установлен бит PutEstimations, то генерируется запрос к задачнику Put с аргументами Handle, Estim, tbEstimations (Передает задачнику оценку примера)

7. Если в аргументе Instruct установлен бит Gradient, то генерируется запрос к сети Back, с аргументами Null, Back. (Выполняется обратное функционирование сети)

8. Если в аргументе Instruct установлен бит Contrast, то генерируется запрос к контрастеру ContrastExample с аргументом ложь.

9. Генерируется запрос к задачнику Next с аргументом Handle. (Переход к следующему примеру)

10. Переход к шагу 13 алгоритма.

15. Вычисляем среднюю оценку: If Tasks = 0 Then Estim = 0 Else Estim = Work / Task

16. Если в аргументе Instruct установлен бит Contrast, то генерируется запрос к контрастеру ContrastExample с аргументом истина.

17. Освобождаются массивы Data, AnsArray и InArray.

18. Если в аргументе Instruct установлен бит Estimate, то освобождается массив и RelArray.

19. Если в аргументе Instruct установлен бит Interpret, то освобождаются массивы Answers и Reliability.

20. Если Back <> Null освобождается массив Back.

21. Завершает исполнение, возвращая значение истина

Ошибки компонента исполнитель

В табл. 36 приведен полный список ошибок, которые могут возникать при выполнении запросов компонентом исполнитель, и действия стандартного обработчика ошибок.

Таблица 36. Ошибки компонента исполнитель и действия стандартного обработчика ошибок.

Название ошибки Стандартная обработка
001 Некорректное сочетание флагов в аргументе Instruct. Занесение номера в Error

Стандарт первого уровня компонента учитель

В этом разделе приводится стандарт языка описания компонента учитель. Поскольку часть алгоритмов обучения жестко привязана к архитектуре сети, то в следующем разделе предложен способ опознания «своих» сетей.

Способ опознания сети для методов, привязанных к архитектуре сети

Для опознания типа сети рекомендуется использовать первый параметр сети. Для этого архитектуре сети приписывается уникальный номер, типа Long. Уникальность может поддерживаться, например, за счет использования генератора случайных чисел. Кроме того, при описании параметров сети следует задать отдельный тип параметров для первого параметра и указать минимальную границу равной максимальной и равной номеру архитектуры сети. Также необходимо указать в маске параметров, что этот параметр является необучаемым. Учитель, прежде чем выполнить любую операцию с сетью, читает параметры сети, и проверяет первый параметр сети, интерпретируемый как переменная типа Long, на совпадение с хранимым в учителе номером архитектуры. В случае несовпадения номера в параметрах сети с номером в учителе, учитель генерирует внутреннюю ошибку 601 — несовместимость сети и учителя.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Е. Миркес читать все книги автора по порядку

Е. Миркес - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Учебное пособие по курсу «Нейроинформатика» отзывы


Отзывы читателей о книге Учебное пособие по курсу «Нейроинформатика», автор: Е. Миркес. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x