Е. Миркес - Учебное пособие по курсу «Нейроинформатика»
- Название:Учебное пособие по курсу «Нейроинформатика»
- Автор:
- Жанр:
- Издательство:КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
- Год:2002
- Город:Красноярск
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Е. Миркес - Учебное пособие по курсу «Нейроинформатика» краткое содержание
Данное учебное пособие подготовлено на основе курса лекций по дисциплине «Нейроинформатика», читавшегося с 1994 года на факультете Информатики и вычислительной техники Красноярского государственного технического университета.
Несколько слов о структуре пособия. Далее во введении приведены учебный план по данному курсу, задания на лабораторные работы. Следующие главы содержат одну или несколько лекций. Материал, приведенный в главах, несколько шире того, что обычно дается на лекциях. В приложения вынесены описания программ, используемых в данном курсе (Clab и Нейроучебник), и проект стандарта нейрокомпьютера, включающий в себя два уровня — уровень запросов компонентов универсального нейрокомпьютера и уровень языков описания отдельных компонентов нейрокомпьютера.
Данное пособие является электронным и включает в себя программы, необходимые для выполнения лабораторных работ.
Учебное пособие по курсу «Нейроинформатика» - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
1. Создать_вектор В1
2. Создать_вектор В2
3. Шаг=1
4. Вычислить_оценку О2
5. Сохранить_вектор В1
6. О1=О2
7. N=0
8. Вычислить_градиент
9. Оптимизация_шага Пустой_указатель Шаг
10. N=N+1
11. Если N
12. Сохранить_вектор В2
13. В2=В2-В1
14. ШагParTan=1
15. Оптимизация шага В2 ШагParTan
16. Вычислить_оценку О2
17. Если О1-О2<���Точность то переход к шагу 5
Рис. 7. Метод kParTan
Одним из простейших антиовражных методов является метод kParTan. Идея метода состоит в том, чтобы запомнить начальную точку, затем выполнить k шагов оптимизации по методу наискорейшего спуска, затем сделать шаг оптимизации по направлению из начальной точки в конечную. Описание метода приведено на рис 7. На рис 6в приведен один шаг оптимизации по методу 2ParTan. Видно, что после шага вдоль направления из первой точки в третью траектория спуска привела в минимум. К сожалению, это верно только для двумерного случая. В многомерном случае направление kParTan не ведет прямо в точку минимума, но спуск в этом направлении, как правило, приводит в окрестность минимума меньшего радиуса, чем при еще одном шаге метода наискорейшего спуска (см. рис. 6б). Кроме того, следует отметить, что для выполнения третьего шага не потребовалось вычислять градиент, что экономит время при численной оптимизации.
Существует большое семейство квазиньютоновских методов, позволяющих на каждом шаге проводить минимизацию в направлении минимума квадратичной формы. Идея этих методов состоит в том, что функция оценки приближается квадратичной формой. Зная квадратичную форму, можно вычислить ее минимум и проводить оптимизацию шага в направлении этого минимума. Одним из наиболее часто используемых методов из семейства одношаговых квазиньютоновских методов является BFGS метод. Этот метод хорошо зарекомендовал себя при обучении нейронных сетей (см. [29]). Подробно ознакомиться с методом BFGS и другими квазиньютоновскими методами можно в работе [48].
Лекции 13, 14. Контрастер
Компонент контрастер предназначен для контрастирования нейронных сетей. Первые работы, посвященные контрастированию (скелетонизации) нейронных сетей появились в начале девяностых годов [64, 323, 340]. Однако, задача контрастирования нейронных сетей не являлась центральной, поскольку упрощение сетей может принести реальную пользу только при реализации обученной нейронной сети в виде электронного (оптоэлектронного) устройства. Только в работе А.Н. Горбаня и Е.М. Миркеса «Логически прозрачные нейронные сети» [83] (более полный вариант работы см. [77]), опубликованной в 1995 году задаче контрастирования нейронных сетей был придан самостоятельный смысл — впервые появилась реальная возможность получать новые явные знания из данных. В связи с тем, что контрастирование нейронных сетей не является достаточно развитой ветвью нейроинформатики, стандарт, приведенный в данной главе, является очень общим.
Задачи для контрастера
Из анализа литературы и опыта работы группы НейроКомп можно сформулировать следующие задачи, решаемые с помощью контрастирования нейронных сетей.
1. Упрощение архитектуры нейронной сети.
2. Уменьшение числа входных сигналов.
3. Сведение параметров нейронной сети к небольшому набору выделенных значений.
4. Снижение требований к точности входных сигналов.
5. Получение явных знаний из данных.
Далее в этом разделе все перечисленные выше задачи рассмотрены более подробно.
Упрощение архитектуры нейронной сети
Стремление к упрощению архитектуры нейронных сетей возникло из попытки ответить на следующие вопрос: «Сколько нейронов нужно использовать и как они должны быть связаны друг с другом?» При ответе на этот вопрос существует две противоположные точки зрения. Одна из них утверждает, что чем больше нейронов использовать, тем более надежная сеть получится. Сторонники этой позиции ссылаются на пример человеческого мозга. Действительно, чем больше нейронов, тем больше число связей между ними, и тем более сложные задачи способна решить нейронная сеть. Кроме того, если использовать заведомо большее число нейронов, чем необходимо для решения задачи, то нейронная сеть точно обучится. Если же начинать с небольшого числа нейронов, то сеть может оказаться неспособной обучиться решению задачи, и весь процесс придется повторять сначала с большим числом нейронов. Эта точка зрения (чем больше — тем лучше) популярна среди разработчиков нейросетевого программного обеспечения. Так, многие из них как одно из основных достоинств своих программ называют возможность использования любого числа нейронов.
X | 1 | 2 | 3 | 4 |
---|---|---|---|---|
F ( X ) | 5 | 4 | 6 | 3 |
Рис. 1. Аппроксимация табличной функции
Вторая точка зрения опирается на такое «эмпирическое» правило: чем больше подгоночных параметров, тем хуже аппроксимация функции в тех областях, где ее значения были заранее неизвестны. С математической точки зрения задачи обучения нейронных сетей сводятся к продолжению функции заданной в конечном числе точек на всю область определения. При таком подходе входные данные сети считаются аргументами функции, а ответ сети — значением функции. На рис. 1 приведен пример аппроксимации табличной функции полиномами 3-й (рис. 1.а) и 7-й (рис. 1.б) степеней. Очевидно, что аппроксимация, полученная с помощью полинома 3-ей степени больше соответствует внутреннему представлению о «правильной» аппроксимации. Несмотря на свою простоту, этот пример достаточно наглядно демонстрирует суть проблемы.
Второй подход определяет нужное число нейронов как минимально необходимое. Основным недостатком является то, что это, минимально необходимое число, заранее неизвестно, а процедура его определения путем постепенного наращивания числа нейронов весьма трудоемка. Опираясь на опыт работы группы НейроКомп в области медицинской диагностики [18, 49–52, 73, 91, 92, 161, 162, 166, 183–188, 191–209, 256, 296–299, 317, 318, 344–349, 354, 364], космической навигации и психологии можно отметить, что во всех этих задачах ни разу не потребовалось более нескольких десятков нейронов.
Подводя итог анализу двух крайних позиций, можно сказать следующее: сеть с минимальным числом нейронов должна лучше («правильнее», более гладко) аппроксимировать функцию, но выяснение этого минимального числа нейронов требует больших интеллектуальных затрат и экспериментов по обучению сетей. Если число нейронов избыточно, то можно получить результат с первой попытки, но существует риск построить «плохую» аппроксимацию. Истина, как всегда бывает в таких случаях, лежит посередине: нужно выбирать число нейронов большим, чем необходимо, но не намного. Это можно осуществить путем удвоения числа нейронов в сети после каждой неудачной попытки обучения. Наиболее надежным способом оценки минимального числа нейронов является использование процедуры контрастирования. Кроме того, процедура контрастирования позволяет ответить и на второй вопрос: какова должна быть структура сети.
Читать дальшеИнтервал:
Закладка: