Е. Миркес - Учебное пособие по курсу «Нейроинформатика»

Тут можно читать онлайн Е. Миркес - Учебное пособие по курсу «Нейроинформатика» - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-programming, издательство КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ, год 2002. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Учебное пособие по курсу «Нейроинформатика»
  • Автор:
  • Жанр:
  • Издательство:
    КРАСНОЯРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
  • Год:
    2002
  • Город:
    Красноярск
  • ISBN:
    нет данных
  • Рейтинг:
    4.22/5. Голосов: 91
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Е. Миркес - Учебное пособие по курсу «Нейроинформатика» краткое содержание

Учебное пособие по курсу «Нейроинформатика» - описание и краткое содержание, автор Е. Миркес, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Данное учебное пособие подготовлено на основе курса лекций по дисциплине «Нейроинформатика», читавшегося с 1994 года на факультете Информатики и вычислительной техники Красноярского государственного технического университета.

Несколько слов о структуре пособия. Далее во введении приведены учебный план по данному курсу, задания на лабораторные работы. Следующие главы содержат одну или несколько лекций. Материал, приведенный в главах, несколько шире того, что обычно дается на лекциях. В приложения вынесены описания программ, используемых в данном курсе (Clab и Нейроучебник), и проект стандарта нейрокомпьютера, включающий в себя два уровня — уровень запросов компонентов универсального нейрокомпьютера и уровень языков описания отдельных компонентов нейрокомпьютера.

Данное пособие является электронным и включает в себя программы, необходимые для выполнения лабораторных работ.

Учебное пособие по курсу «Нейроинформатика» - читать онлайн бесплатно полную версию (весь текст целиком)

Учебное пособие по курсу «Нейроинформатика» - читать книгу онлайн бесплатно, автор Е. Миркес
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Как уже отмечалось ранее, основная сложность в аппаратной реализации нейронных сетей — большое число связей между элементами. В связи с этим, задача уменьшения числа связей (упрощения архитектуры нейронной сети) приобретает особенную важность. Во многих приложениях, выполненных группой НейроКомп [18, 49–52, 65, 73, 91, 92, 161, 162, 166, 183–188, 191–209, 256, 286, 296–299, 300–302, 317, 318, 344–348, 354, 364, 367] в ходе процедуры контрастирования число связей уменьшалось в 5-10 раз. Кроме того, при этом уменьшалось общее число элементов. Такое кардинальное упрощение архитектуры нейронной сети резко упрощает ее аппаратную реализацию.

Уменьшение числа входных сигналов

При постановке задачи для нейронной сети не всегда удается точно определить сколько и каких входных данных нужно подавать на вход. В случае недостатка данных сеть не сможет обучиться решению задачи. Однако гораздо чаще на вход сети подается избыточный набор входных параметров. Например, при обучении сети постановке диагноза в задачах медицинской диагностики на вход сети подаются все данные, необходимые для постановки диагноза в соответствии с существующими методиками. Следует учесть, что стандартные методики постановки диагнозов разрабатываются для использования на большой территории (например, на территории России). Как правило, при диагностике заболеваний населения какого-нибудь небольшого региона (например города) можно обойтись меньшим набором исходных данных. Причем этот усеченный набор будет варьироваться от одного малого региона к другому. Требуется определить, какие данные необходимы для решения конкретной задачи, поставленной для нейронной сети. Кроме того, в ходе решения этой задачи определяются значимости входных сигналов. Следует заметить, что умение определять значимость входных сигналов представляет самостоятельную ценность.

Сведение параметров нейронной сети к выделенным значениям

При обучении нейронных сетей на универсальных компьютерах параметры сети являются действительными числами из заданного диапазона. При аппаратной реализации нейронной сети не всегда возможно реализовать веса связей с высокой точностью (в компьютерном представлении действительных чисел хранятся первые 6–7 цифр мантиссы). Опыт показывает, что в обученной сети веса многих синапсов можно изменять в довольно широком диапазоне (до полуширины интервала изменения веса) не изменяя качество решения сетью поставленной перед ней задачи. Исходя из этого, умение решать задачу замены значений параметров сети на значения из заданного набора приобретает важный практический смысл.

Снижение требований к точности входных сигналов

При обработке экспериментальных данных полезно знать, что измерение с высокой точностью, как правило, дороже измерения с низкой точностью. Причем достаточно часто получение очередной значащей цифры измеряемого параметра стоит на несколько порядков дороже. В связи с этим задача снижения требований к точности измерения входных параметров сети приобретает смысл.

Получение явных знаний из данных

Одной из главных загадок мышления является то, как из совокупности данных об объекте, появляется знание о нем. До недавнего времени наибольшим достижением в области искусственного интеллекта являлось либо воспроизведение логики человека-эксперта (классические экспертные системы), либо построение регрессионных зависимостей и определение степени зависимости одних параметров от других.

С другой стороны, одним из основных недостатков нейронных сетей, с точки зрения многих пользователей, является то, что нейронная сеть решает задачу, но не может рассказать как. Иными словами из обученной нейронной сети нельзя извлечь алгоритм решения задачи. Таким образом нейронные сети позволяют получать неявные знания из данных.

В домашнем задании I Всесоюзной олимпиады по нейрокомпьютингу, проходившей в мае 1991 года в городе Омске, в исследовательской задаче участникам было предложено определить, как нейронная сеть решает задачу распознавания пяти первых букв латинского алфавита (полный текст задания и наиболее интересные варианты решения приведены в [47]). Это была первая попытка извлечения алгоритма решения задачи из обученной нейронной сети.

В 1995 году была сформулирована идея логически прозрачных сетей, то есть сетей на основе структуры которых можно построить вербальное описание алгоритма получения ответа. Это достигается при помощи специальным образом построенной процедуры контрастирования.

Построение логически прозрачных сетей

Рис. 2. Набор минимальных сетей для решения задачи о предсказании результатов выборов президента США. В рисунке использованы следующие обозначения: буквы «П» и «О» — обозначают вид ответа, выдаваемый нейроном: «П» — положительный сигнал означает победу правящей партии, а отрицательный — оппозиционной; «О» — положительный сигнал означает победу оппозиционной партии, а отрицательный — правящей;

Зададимся классом сетей, которые будем считать логически прозрачными (то есть такими, которые решают задачу понятным для нас способом, для которого легко сформулировать словесное описания в виде явного алгоритма). Например потребуем, чтобы все нейроны имели не более трех входных сигналов.

Зададимся нейронной сетью у которой все входные сигналы подаются на все нейроны входного слоя, а все нейроны каждого следующего слоя принимают выходные сигналы всех нейронов предыдущего слоя. Обучим сеть безошибочному решению задачи.

После этого будем производить контрастирование в несколько этапов. На первом этапе будем удалять только входные связи нейронов входного слоя. Если после этого у некоторых нейронов осталось больше трех входных сигналов, то увеличим число входных нейронов. Затем аналогичную процедуру выполним поочередно для всех остальных слоев. После завершения описанной процедуры будет получена логически прозрачная сеть. Можно произвести дополнительное контрастирование сети, чтобы получить минимальную сеть. На рис. 2 приведены восемь минимальных сетей. Если под логически прозрачными сетями понимать сети, у которых каждый нейрон имеет не более трех входов, то все сети кроме пятой и седьмой являются логически прозрачными. Пятая и седьмая сети демонстрируют тот факт, что минимальность сети не влечет за собой логической прозрачности.

Получение явных знаний

После получения логически прозрачной нейронной сети наступает этап построения вербального описания. Принцип построения вербального описания достаточно прост. Используемая терминология заимствована из медицины. Входные сигналы будем называть симптомами. Выходные сигналы нейронов первого слоя — синдромами первого уровня. Очевидно, что синдромы первого уровня строятся из симптомов. Выходные сигналы нейронов k — о слоя будем называть синдромами k — о уровня. Синдромы k — о первого уровня строятся из симптомов и синдромов более низких уровней. Синдром последнего уровня является ответом.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Е. Миркес читать все книги автора по порядку

Е. Миркес - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Учебное пособие по курсу «Нейроинформатика» отзывы


Отзывы читателей о книге Учебное пособие по курсу «Нейроинформатика», автор: Е. Миркес. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x