Скотт Майерс - Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ
- Название:Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ
- Автор:
- Жанр:
- Издательство:Литагент «ДМК»233a80b4-1212-102e-b479-a360f6b39df7
- Год:2006
- Город:Москва
- ISBN:5-94074-304-8
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Скотт Майерс - Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ краткое содержание
Эта книга представляет собой перевод третьего издания американского бестселлера Effective C++ и является руководством по грамотному использованию языка C++. Она поможет сделать ваши программы более понятными, простыми в сопровождении и эффективными. Помимо материала, описывающего общую стратегию проектирования, книга включает в себя главы по программированию с применением шаблонов и по управлению ресурсами, а также множество советов, которые позволят усовершенствовать ваши программы и сделать работу более интересной и творческой. Книга также включает новый материал по принципам обработки исключений, паттернам проектирования и библиотечным средствам.
Издание ориентировано на программистов, знакомых с основами C++ и имеющих навыки его практического применения.
Эффективное использование C++. 55 верных способов улучшить структуру и код ваших программ - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Сорок лет назад код, изобилующий операторами goto, считался вполне приемлемым. Теперь же мы стараемся писать структурированные программы. Двенадцать лет назад глобальные данные ни у кого не вызывали возражений. Теперь мы стремимся данные инкапсулировать. Десять лет назад написание функций без учета влияния исключений было нормой. А сейчас мы боремся за достижение безопасности относительно исключений.
Времена меняются. Мы живем. Мы учимся.
• Безопасные относительно исключений функции не допускают утечки ресурсов и повреждения структур данных, даже в случае возбуждения исключений. Такие функции предоставляют базовую гарантию, строгую гарантию либо гарантию полного отсутствия исключений.
• Строгая гарантия часто может быть реализована посредством копирования и обмена, но предоставлять ее для всех функций непрактично.
• Функция обычно может предоставить гарантию не строже, чем самая слабая гарантия, обеспечиваемая вызываемыми из нее функциями.
Правило 30: Тщательно обдумывайте использование встроенных функций
Встроенные функции – какая замечательная идея! Они выглядят подобно функциям, они работают подобно функциям, они намного лучше макросов (см. правило 2). Их можно вызывать, не опасаясь накладных расходов, связанных с вызовом обычных функций. Чего еще желать?
В действительности вы получаете больше, чем рассчитывали, потому что возможность избежать затрат на вызов функции – это только полдела. Оптимизация, выполняемая компилятором, обычно наиболее эффективна на участке кода, не содержащем вызовов функций. Таким образом, вы даете компилятору возможность оптимизации тела встроенной функции в зависимости от объемлющего контекста. При использовании «обычного» функционального вызова большинство компиляторов такой оптимизации на обычных не выполняют.
Все же давайте не будем слишком увлекаться. В программировании, как и в реальной жизни, не бывает «бесплатных завтраков», и встроенные функции – не исключение. Идея их использования состоит в замене каждого вызова такой функции ее телом. Не нужно быть доктором математических наук, чтобы заметить, что это увеличит общий размер вашего объектного кода. Слишком частое применение встроенных функций на машинах с ограниченной памятью может привести к созданию программы, которая превосходит доступную память. Даже при наличии виртуальной памяти «разбухание» кода, вызванное применением встроенных функций, может привести к дополнительному обмену с диском, уменьшить коэффициент попадания команд в кэш и, следовательно, снизить производительность программы.
С другой стороны, если тело встроенной функции очень короткое, то сгенерированный для нее код может быть короче кода, сгенерированного для вызова функции. В таком случае встраивание функции может привести к уменьшению объектного кода и повышению коэффициента попаданий в кэш!
Имейте в виду, что директива inline – это совет, а не команда компилятору. Совет может быть сформулирован явно или неявно. Неявный способ заключается в определении встроенной функции внутри определения класса:
class Person {
public:
...
int age() const { return theAge;} // неявный запрос на встраивание;
... // функция age определена внутри класса
private:
int theAge;
};
Такие функции обычно являются функциями-членами, но в правиле 46 объясняется, что функции-друзья тоже могут быть определены внутри класса. В этом случае они также неявно считаются встроенными.
Явно объявить встроенную функцию можно, предварив ее определение ключевым словом inline. Например, вот как обычно реализован стандартный шаблон max (из заголовочного файла ):
template // явный запрос на
inline const T& std::max(const T& a, const T& b) // встраивание: функции
{ return a < b ? b : c;} // std::max предшествует
// слово inline
Тот факт, что max – это шаблон, наводит на мысль, что встроенные функции и шаблоны обычно объявляются в заголовочных файлах. Некоторые программисты делают из этого вывод, что шаблоны функций обязательно должны быть встроенными. Это заключение одновременно неверно и потенциально опасно, поэтому рассмотрим его внимательнее.
Встроенные функции обычно должны находиться в заголовочных файлах, поскольку большинство разработки программ выполняют встраивание во время компиляции. Чтобы заменить вызовы функции встраиванием ее тела, компилятор должен увидеть эту функцию. (Некоторые среды могут встраивать функции во время компоновки, а есть и такие – например, среды разработки на базе. NET Common Language Infrastructure (CLI), – которые осуществляют встраивание во время исполнения. Но это скорее исключение, чем правило. Встраивание функций в большинстве программ на C++ происходит во время компиляции.)
Шаблоны обычно находятся в заголовочных файлах, потому что компилятор должен знать, как шаблон выглядит, чтобы конкретизировать его в момент использования. (Но и это правило не является универсальным. Некоторые среды разработки выполняют конкретизацию шаблонов во время компоновки. Однако конкретизация на этапе компиляции встречается чаще.)
Конкретизация шаблонов никак не связана со встраиванием. Если вы полагаете, что все функции, конкретизированные из вашего шаблона, должны быть встроенными, объявите шаблон встроенным (inline); именно так разработчики стандартной библиотеки поступили с шаблоном std::max (см. пример выше). Но если вы пишете шаблон для функции, которую нет смысла делать встроенной, не объявляйте встроенным и ее шаблон (явно или неявно). Встраивание обходится дорого, и вряд ли вы захотите платить за это без должного размышления. Мы уже упоминали, что встраивание раздувает код (особенно это важно при разработке шаблонов – см. правило 44), но есть и другие затраты, которые мы скоро обсудим.
Но прежде напомним, что встраивание – это совет, который компилятор может проигнорировать. Большинство компиляторов отвергают встраивание функций, которые представляются слишком сложными (например, содержат циклы или рекурсию), и за исключением наиболее тривиальных случаев, вызов виртуальной функции отменяет встраивание. В этом нет ничего удивительного: virtual означает «какую точно функцию вызвать, определяется в момент исполнения», а inline – «перед исполнением заменить вызов функции ее кодом». Если компилятор не знает, какую функцию вызывать, то трудно винить его в том, что он отказывается делать встраивание.
Все это в конечном счете сводится к следующему: от реализации используемого компилятора зависит, встраивается ли в действительность встроенная функция. К счастью, большинство компиляторов обладают достаточными диагностическими возможностями и выдают предупреждение (см. правило 53), если не могут выполнить запрошенное вами встраивание.
Читать дальшеИнтервал:
Закладка: