Герб Саттер - Стандарты программирования на С++. 101 правило и рекомендация
- Название:Стандарты программирования на С++. 101 правило и рекомендация
- Автор:
- Жанр:
- Издательство:Издательский дом Вильямс
- Год:2005
- Город:Москва
- ISBN:5-8459-0859-0
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Герб Саттер - Стандарты программирования на С++. 101 правило и рекомендация краткое содержание
Эта книга поможет новичку стать профессионалом, так как в ней представлен сконцентрированный лучший опыт программистов на С++, обобщенный двумя экспертами мирового класса.
Начинающий программист найдет в ней простые и понятные рекомендации для ежедневного использования, подкрепленные примерами их конкретного применения на практике.
Опытные программисты найдут в ней советы и новые рекомендации, которые можно сразу же принять на вооружение. Программисты-профессионалы могут использовать эту книгу как основу для разработки собственных стандартов кодирования, как для себя лично, так и для группы, которой они руководят.
Конечно, книга рассчитана в первую очередь на профессиональных программистов с глубокими знаниями языка, однако она будет полезна любому, кто захочет углубить свои знания в данной области.
Стандарты программирования на С++. 101 правило и рекомендация - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
• Вариант 3. istream
или File
. Если уж вы переходите к типам, являющимся классами, т.е. в любом случае требуется, чтобы клиент использовал язык программирования С++, причем тот же компилятор с теми же опциями компиляции, то воспользуйтесь преимуществами абстракции: класс istream
(или пользовательский класс File
, представляющий собой оболочку вокруг istream
, позволяющую устранить зависимость от реализации стандартной библиотеки) повышает уровень абстракции и делает API существенно менее проблематичным. Функция получает объект типа File
или соответствующий входной поток, она не должна заботиться об управлении памятью для строк, содержащих имя файла, и защищена от множества ошибок, которые вполне возможны при использовании первых двух вариантов. Остается только выполнить несколько проверок: файл должен быть открыт, а его содержимое иметь верный формат, но, в принципе, этим и ограничивается список неприятностей, которые могут произойти в данном варианте.
Даже если вы предпочтете воспользоваться во внешнем интерфейсе модуля низкоуровневой абстракцией, всегда используйте во внутренней реализации абстракции максимально высокого уровня и преобразуйте их в низкоуровневые абстракции на границах модуля. Например, если у вас имеются клиенты, не использующие С++, вы можете воспользоваться непрозрачным указателем void*
или дескриптором типа int
для работы с клиентом, но во внутренней реализации используйте высокоуровневые объекты. Преобразование между этими объектами и выбранными низкоуровневыми типами выполняйте только в интерфейсе модуля.
Пример. Использование std::string
в интерфейсе модуля. Пусть мы хотим, чтобы модуль предоставлял следующую функцию API:
std::string Translate(const std::string&);
Для библиотек, используемых внутри одной команды компании, это обычно неплохое решение. Но если вы планируете динамически компоновать данный модуль с вызывающим кодом, который использует иную реализацию std::string
(например, иное размещение в памяти), то из-за такого несоответствия могут случиться разные странные и неприятные вещи.
Мы встречались с разработчиками, которые пытались использовать собственный класс-оболочку CustomString
для объектов std::string
, но в результате они сталкивались с той же проблемой, поскольку не имели полного контроля над процессом сборки всех клиентских приложений.
Одно из решений состоит в переходе к переносимым (вероятно, встроенным) типам, как вместо функции с аргументом string
, так и в дополнение к ней. Такой новой функцией может быть функция
void Translate(const char* src, char* dest, size_t destSize);
Использование низкоуровневой абстракции более переносимо, но всегда добавляет сложности; здесь, например, как вызывающий, так и вызываемый код должны явно использовать обрезку строки, если размера буфера оказывается недостаточно. (Заметим, что данная версия использует буфер, выделяемый вызывающим кодом, для того чтобы избежать ловушки, связанной с выделением и освобождением памяти в разных модулях — см. рекомендацию 60.)
[McConnell93] §6 • [Meyers01] §15
Шаблоны и обобщенность
Место для вашей цитаты.
— Бьярн Страуструп (Bjarne Stroustrup), [Stroustrup00] §13Аналогично: место для вашего введения.
В этом разделе мы считаем наиболее значимой рекомендацию 64 — "Разумно сочетайте статический и динамический полиморфизм".
64. Разумно сочетайте статический и динамический полиморфизм
Статический и динамический полиморфизм дополняют друг друга. Следует ясно представлять себе их преимущества и недостатки, чтобы использовать каждый из них там, где он дает наилучшие результаты, и сочетать их так, чтобы получить лучшее из обоих миров.
Динамический полиморфизм предстает перед нами в форме классов с виртуальными функциями и объектов, работа с которыми осуществляется косвенно — через указатели или ссылки. Статический полиморфизм включает шаблоны классов и функций.
Полиморфизм означает, что данное значение может иметь несколько типов, а данная функция может принимать аргументы типов, отличающихся от точных типов ее параметров. "Полиморфизм представляет собой способ получить немного свободы динамической проверки типов, не теряя преимуществ статической проверки" — [Webber03].
Сила полиморфизма состоит в том, что один и тот же фрагмент кода может работать с разными типами, даже с теми, которые не были известны в момент написания этого кода. Такая "применимость задним числом" является краеугольным камнем полиморфизма, поскольку существенно увеличивает пригодность и возможность повторного использования кода (см. рекомендацию 37). (В противоположность этому мономорфный код работает только со строго конкретными типами, теми, для работы с которыми он изначально создавался.)
Динамический полиморфизм позволяет значению иметь несколько типов посредством открытого наследования. Например, Derived* p
можно рассматривать как указатель не только на Derived
, но и на объект любого типа Base
, который прямо или косвенно является базовым для Derived
(свойство категоризации). Динамический полиморфизм известен также как включающий полиморфизм, поскольку множество, моделируемое Base
, включает специализации, моделируемые Derived
.
Благодаря своим характеристикам динамический полиморфизм в С++ наилучшим образом подходит для решения следующих задач.
• Единообразная работа, основанная на отношении надмножество/подмножество. Работа с различными классами, удовлетворяющими отношению надмножество/подмножество (базовый/производный), может выполняться единообразно. Функция, работающая с объектом Employee
(Служащий), будет работать и с объектами Secretary
(Секретарь).
• Статическая проверка типов. В С++ все типы проверяются статически.
• Динамическое связывание и раздельная компиляция. Код, который использует иерархию классов, может компилироваться отдельно от этой иерархии. Это становится возможным благодаря косвенности, обеспечиваемой указателями (как на объекты, так и на функции).
• Бинарная согласованность. Модули могут компоноваться как статически, так и динамически, до тех пор, пока схемы виртуальных таблиц подчиняются одним и тем же правилам.
Статический полиморфизм посредством шаблонов также позволяет значению иметь несколько типов. Внутри шаблона
template void f(T t) { /* ... */ }
t
может иметь любой тип, который можно подставить в f
для получения компилируемого кода. Это называется "неявным интерфейсом" в противоположность явному интерфейсу базового класса. Таким образом достигается та же цель полиморфизма — написание кода, который работает с разными типами — но совершенно иным путем.
Интервал:
Закладка: