Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi
- Название:Фундаментальные алгоритмы и структуры данных в Delphi
- Автор:
- Жанр:
- Издательство:ДиаСофтЮП
- Год:2003
- ISBN:ISBN 5-93772-087-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi краткое содержание
Книга "Фундаментальные алгоритмы и структуры данных в Delphi" представляет собой уникальное учебное и справочное пособие по наиболее распространенным алгоритмам манипулирования данными, которые зарекомендовали себя как надежные и проверенные многими поколениями программистов. По данным журнала "Delphi Informant" за 2002 год, эта книга была признана сообществом разработчиков прикладных приложений на Delphi как «самая лучшая книга по практическому применению всех версий Delphi».
В книге подробно рассматриваются базовые понятия алгоритмов и основополагающие структуры данных, алгоритмы сортировки, поиска, хеширования, синтаксического разбора, сжатия данных, а также многие другие темы, тесно связанные с прикладным программированием. Изобилие тщательно проверенных примеров кода существенно ускоряет не только освоение фундаментальных алгоритмов, но также и способствует более квалифицированному подходу к повседневному программированию.
Несмотря на то что книга рассчитана в первую очередь на профессиональных разработчиков приложений на Delphi, она окажет несомненную пользу и начинающим программистам, демонстрируя им приемы и трюки, которые столь популярны у истинных «профи». Все коды примеров, упомянутые в книге, доступны для выгрузки на Web-сайте издательства.
Фундаментальные алгоритмы и структуры данных в Delphi - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Листинг 10.14. Класс очереди целочисленных значений с двусторонним доступом type
TtdIntDeque = class private
FList : TList;
FHead : integer;
FTail : integer;
protected procedure idGrow;
procedure idError(aErrorCode : integer;
const aMethodName : TtdNameString);
public
constructor Create(aCapacity : integer);
destructor Destroy; override;
function IsEmpty : boolean;
procedure Enqueue(aValue : integer);
procedure Push(aValue : integer);
function Pop : integer;
end;
constructor TtdIntDeque.Create(aCapacity : integer);
begin
inherited Create;
FList := TList.Create;
FList.Count := aCapacity;
{для облегчения задачи пользователя очереди с двусторонним доступом поместить указатели начала и конца очереди в ее середину - вероятно, это более эффективно}
FHead := aCapacity div 2;
FTail := FHead;
end;
destructor TtdIntDeque.Destroy;
begin
FList.Free;
inherited Destroy;
end
procedure TtdIntDeque.Enqueue(aValue : integer);
begin
FList.List^[FTail] := pointer(aValue);
inc(FTail);
if (FTail = FList.Count) then
FTail := 0;
if (FTail = FHead) then
idGrow;
end;
procedure TtdIntDeque.idGrow;
var
OldCount : integer;
i, j : integer;
begin
{увеличить размер списка на 50%}
OldCount := FList.Count;
FList.Count := (OldCount * 3) div 2;
{распределить данные по увеличенной области, поддерживая при этом очередь с двусторонним доступом}
if (FHead= 0) then
FTail := OldCount else begin
j := FList.Count;
for i := pred(OldCount) downto FHead do
begin
dec(j);
FList.List^[j] := FList.List^[i] end;
FHead := j;
end;
end;
function TtdIntDeque.IsEmpty : boolean;
begin
Result := FHead = FTail;
end;
procedure TtdIntDeque.Push(aValue : integer);
begin
if (FHead = 0) then
FHead := FList.Count;
dec(FHead);
FList.List^[FHead] := pointer(aValue);
if (FTail = FHead) then
idGrow;
end;
function TtdIntDeque.Pop : integer;
begin
if FHead = FTail then
idError(tdeDequeIsEmpty, 'Pop');
Result := integer(FList.List^[FHead]);
inc(FHead);
if (FHead = FList.Count) then
FHead := 0;
end;
Алгоритм работает следующим образом. Поставим значение -1 в очередь с двусторонним доступом. Это специальное значение, которое указывает о необходимости выполнить считывание входной строки по одному элементу. Теперь поставим в очередь с двусторонним доступом номер исходного состояния. Установим целочисленное значение равным 0. Это значение будет индексом текущего символа в строке, сопоставление с которой выполняется.
После того, как подготовка закончена, мы входим в цикл. На каждом этапе выполнения цикла выполняется одно и то же действие: выталкивание верхнего значения из очереди. Если этим значением является -1 (как, естественно, это будет вначале), мы увеличиваем индекс текущего символа и извлекаем этот символ из сопоставляемой строки. Снова поставим значение -1 в очередь, чтобы знать, когда нужно выполнить считывание следующего символа. Если это значение не -1, оно должно быть реальным номером состояния. Взглянем на запись состояния в таблице переходов. Если текущий входной символ соответствует шаблону символов этого состояния, значение NextStatel состояния нужно поставить в очередь. Понятно, что если шаблоном символов состояния был е, символ не соответствовал шаблону. В этом случае в очередь с двусторонним доступом мы заталкиваем значение NextStatel, а затем значение NextState2.
Выполнение цикла прекращается, как только очередь с двусторонним доступом оказывается пустой (ни один путь не соответствует входной строке) или при считывании всех символов из сопоставляемой строки (в этом случае очередь содержит набор состояний, достигнутых на момент достижения конца строки, которые можно выталкивать из очереди до тех пор, пока в зависимости от конкретной ситуации не будет найдено или не найдено одно единственное конечное состояние).
Общий результат применения этого алгоритма состоит в том, что в очередь с двусторонним доступом помещается значение "извлечь следующий символ" (-1). "Слева" от него располагается набор состояний, с которым нам по-прежнему необходимо сравнить текущий символ (мы постоянно выталкиваем из очереди эти состояния и помещаем в нее те, которых можно достичь за счет выполнения бесплатного перехода). "Справа" от него находятся состояния, полученные из тех, которые уже соответствуют текущему символу. Переход к ним будет осуществляться сразу после выталкивания значения -1 из очереди и извлечения следующего символа. Как видите, алгоритм одновременно проверяет все пути обхода конечного NFA-автомата.
Подпрограмма сопоставления приведена в листинге 10.15. Она была создана в качестве метода машины обработки регулярных выражений. Ей передается строка, с которой должно быть выполнено сопоставление, и значение индекса. Значение индекса указывает позицию в строке, начиная с которой предположительно должно начинаться совпадение. Это позволяет использовать регулярное выражение для сопоставления с любой частью строки, а не со всей строкой, как делалось в приведенных простых примерах конечных автоматов. Метод будет возвращать значение true, если таблица переходов регулярного выражения соответствует строке, начиная с данной позиции.
Листинг 10.15. Сопоставление подстрок с таблицей переходов
function TtdRegexEngine.rcMatchSubString(const S : string;
StartPosn : integer): boolean;
var
Ch : AnsiChar;
State : integer;
Deque : TtdIntDeque;
StrInx : integer;
begin
{предположить, что сопоставление будет неудачным}
Result := false;
{создать очередь с двусторонним доступом}
Deque := TtdIntDeque.Create(64);
try
{поставить в очередь специальное значение, означающее начало сканирования}
Deque.Enqueue(MustScan);
{поставить в очередь первое состояние}
Deque.Enqueue(FStartState);
{подготовить индекс строки}
StrInx := StartPosn - 1;
{выполнять цикл до тех пор, пока очередь не будет пуста, или пока строка не закончится}
while (StrInx <= length (S)) and not Deque.IsEmpty do
begin {вытолкнуть верхнее состояние из очереди}
State := Deque.Pop;
{вначале выполнить обработку состояния "необходимо выполнить сканирование "}
if (State = MustScan) then begin
{если очередь пуста, вполне вероятно, что задача выполнена, поскольку не осталось никаких состояний для обработки новых символов}
if not Deque.IsEmpty then begin
{если строка не закончилась, нужно извлечь символ и снова поставить в очередь состояние "необходимо выполнить сканирование"}
inc(StrInx);
if (StrInx <= length(S)) then begin
Ch := S[StrInx];
Deque.Enqueue(MustScan);
end;
end;
end
{в противном случае необходимо обработать состояние}
else with PNFAState (FTable [ State ])^ do
begin
case sdMatchType of
mtNone : begin
{для бесплатных переходов необходимо заталкивать в очередь следующие состояния}
Deque.Push(sdNextState2);
Deque.Push(sdNextState1);
end;
mtAnyChar : begin
{для сопоставления с любым символом необходимо поставить в очередь следующее состояние}
Deque.Enqueue(sdNextState1);
end;
mtChar : begin
{для сопоставления с символом необходимо поставить в очередь следующее состояние}
if (Ch = sdChar) then
Deque.Enqueue(sdNextState1);
end;
mtClass : begin
{для сопоставления с символом, входящим в состав класса, необходимо поставить в очередь следующее состояние}
if (Ch in sdClass^ ) then
Deque.Enqueue(sdNextState1);
end;
mtNegClass : begin
{для сопоставления с символом, не входящим в состав класса, необходимо поставить в очередь следующее состояние}
Читать дальшеИнтервал:
Закладка: