Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi
- Название:Фундаментальные алгоритмы и структуры данных в Delphi
- Автор:
- Жанр:
- Издательство:ДиаСофтЮП
- Год:2003
- ISBN:ISBN 5-93772-087-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi краткое содержание
Книга "Фундаментальные алгоритмы и структуры данных в Delphi" представляет собой уникальное учебное и справочное пособие по наиболее распространенным алгоритмам манипулирования данными, которые зарекомендовали себя как надежные и проверенные многими поколениями программистов. По данным журнала "Delphi Informant" за 2002 год, эта книга была признана сообществом разработчиков прикладных приложений на Delphi как «самая лучшая книга по практическому применению всех версий Delphi».
В книге подробно рассматриваются базовые понятия алгоритмов и основополагающие структуры данных, алгоритмы сортировки, поиска, хеширования, синтаксического разбора, сжатия данных, а также многие другие темы, тесно связанные с прикладным программированием. Изобилие тщательно проверенных примеров кода существенно ускоряет не только освоение фундаментальных алгоритмов, но также и способствует более квалифицированному подходу к повседневному программированию.
Несмотря на то что книга рассчитана в первую очередь на профессиональных разработчиков приложений на Delphi, она окажет несомненную пользу и начинающим программистам, демонстрируя им приемы и трюки, которые столь популярны у истинных «профи». Все коды примеров, упомянутые в книге, доступны для выгрузки на Web-сайте издательства.
Фундаментальные алгоритмы и структуры данных в Delphi - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Листинг 12.25. Рекурсивное вычисление LCS
function TtdStringLCS.slGetCell(aFromInx, aToInx : integer): integer;
var
LCSData : PtdLCSData;
NorthLen: integer;
WestLen : integer;
begin
if (aFromInx = 0) or (aToInx = 0) then
Result := 0
else begin
LCSData := FMatrix[ aFromInx, aToInx];
if (LCSData <> nil) then
Result := LCSData^.ldLen else begin
{создать новый элемент}
New(LCSData);
{если два символа совпадают, необходимо увеличить значение счетчика относительно элемента, расположенного к северо-западу от данного, т.е. предшествующего элемента}
if (FFromStr[aFromInx] = FToStr [aToInx]) then begin
LCSData^.ldPrev := ldNorthWest;
LCSData^.ldLen := slGetCell(aFromInx-1, aToInx-1) + 1;
end
{в противном случае текущие символы различаются: необходимо использовать максимальный из элементов, расположенных к северу и западу (выбор элемента расположенного к западу предпочтительнее)}
else begin
NorthLen := slGetCell(aFromInx-1, aToInx);
WestLen := slGetCell(aFromInx, aToInx-1);
if (NorthLen > WestLen) then begin
LCSData^.ldPrev := ldNorth;
LCSData^.ldLen := NorthLen;
end
else begin
LCSData^.ldPrev := ldWest;
LCSData^.ldLen := WestLen;
end;
end;
{установить значение элемента матрицы}
FMatrix[aFromInx, aToInx] := LCSData;
{вернуть длину данной LCS}
Result := LCSData^.ldLen;
end;
end;
end;
Первое существенное различие состоит в том, что не нужно генерировать нулевые значения для ячеек, расположенных вдоль верхней и правой сторон матрицы. Теперь эту задачу выполняет простой оператор If. (Честно говоря, в итеративном варианте вычисления LCS можно было бы обойтись без вычисления этих значений, но в этом случае внутренний код цикла оказался бы значительно сложнее для понимания и поддержки. Поэтому для простоты мы заранее вычисляем значения этих ячеек.) Если значение ячейки уже вычислено, мы просто возвращаем ее длину LCS. Если нет, необходимо выполнить ту же проверку, что и в предыдущем случае: совпадают ли два символа? Если да, то необходимо добавить единицу к значению LCS ячейки, расположенной к северо-западу от данной. Если нет, необходимо использовать большее из значений длины LCS ячеек, расположенных к северу и к западу от текущей. Естественно, эти значения LCS вычисляются в результате рекурсивных вызовов этой подпрограммы.
Применив обе версии (итеративную и рекурсивную), я сгенерировал матрицу для вычисления LCS слов "illiteracy" и "innumeracy". (Длина LCS этих слов равна 6 и выглядит как "ieracy".) Результаты этих немалых трудов приведены в таблицах 12.2 и 12.3. При использовании рекурсивной версии многие ячейки вообще не вычисляются (они помечены знаком вопроса). Эти ячейки образуют часть заключительной LCS.
Таблица 12.2. Итеративная матрица LCS слов "illiteracy" и "innumeracy".

Таблица 12.3. Рекурсивная матрица LCS слов "illiteracy" и "innumeracy".

Итак, мы получили матрицу, которая определяет наиболее длинную общую подпоследовательность. Как ее можно использовать? Одна возможность связана с реализацией подпрограммы, которая создает текстовый файл, описывающий изменения, называемые последовательностью редактирования (edit sequence). Это может упростить создание аналогичной подпрограммы для текстового файла - что, собственно, является конечной целью данного раздела.
Код реализации простой технологии обхода, которая может быть приведена в соответствие с нашими потребностями, показан в листинге 12.26. Подпрограмма содержит два метода: первый вызывается пользователем с указанием имени файла, а второй представляет собой рекурсивную подпрограмму, которая записывает данные в файл. Весь основной объем работы выполняется во второй подпрограмме. Поскольку в матрице путь LCS кодируется в обратном направлении (т.е. для определения пути необходимо начать с конца и продвигаться к началу матрицы), мы создаем метод, который вначале вызывает сам себя, а затем записывает данные, соответствующие текущей позиции. Необходимо обеспечить прерывание выполнения рекурсивной подпрограммы. Это соответствует случаю, когда подпрограмма вызывается для ячейки (0,0). В этом случае никакие данные не записываются в файл. Если индекс строки То равен нулю, мы выполняем рекурсивный вызов, перемещаясь вверх по матрице (индекс строки From уменьшается), и предпринимаемым действием должно быть удаление символа из строки From. Если индекс строки From равен нулю, мы выполняем рекурсивный вызов, перемещаясь по матрице влево, и тогда действием является ставка текущего символа в строку То. И, наконец, если оба индекса не равны нулю, мы находим соответствующую ячейку в матрице, выполняем рекурсивный вызов и записываем действие в файл. Перемещению вниз соответствует удаление, перемещению вправо - вставка, перемещению по диагонали - ни одно из упомянутых действий (символ "переносится" из одной строки в другую). Для обозначения удаления мы будем использовать стрелку, указывающую вправо (-> ), а для обозначения вставки - стрелку, указывающую влево (<-). Перенос символа не обозначается.
Листинг 12.26. Вывод последовательности редактирования
procedure TtdStringLCS.slWriteChange(var F : System.Text;
aFromInx, aToInx : integer);
var
Cell : PtdLCSData;
begin
{если оба индекса равны нулю, данная ячейка является первой ячейкой матрицы LCS, поэтому подпрограмма просто выполняет выход}
if (aFromInx = 0) and (aToInx = 0) then
Exit;
{если индекс строки From равен нулю, ячейка расположена в левом столбце матрицы, поэтому необходимо переместиться вверх; этому будет соответствовать удаление}
if (aFromInx = 0) then begin
slWriteChange(F, aFromInx, aToInx-1);
writeln(F, '->', FToStr[aToInx]);
end
{если индекс строки To равен нулю, ячейка расположена в верхней строке матрицы, поэтому необходимо переместиться влево; этому будет соответствовать вставка}
else
if (aToInx = 0) then begin
slWriteChange(F, aFromInx-1, aToInx);
writeln(F, '< - FFromStr[aFromInx]);
end
{в противном случае необходимо выполнить действия, указанные ячейкой}
else begin
Cell := FMatrix[aFromInx, aToInx];
case Cell^.ldPrev of
ldNorth : begin
slWriteChange(F, aFromInx-1, aToInx);
writeln(F, ' <- ', FFromStr[aFromInx]);
end;
ldNorthWest : begin
slWriteChange(F, aFromInx-1, aToInx-1);
writeln(F, ' ', FFromStr[aFromInx]);
end;
ldWest : begin
slWriteChange(F, aFromInx, aToInx-1);
writeln(F, '-> FToStr[aToInx]);
end;
end;
end;
end;
procedure TtdStringLCS.WriteChanges(const aFileName : string);
var
F : System.Text;
begin
System.Assign(F, aFileName);
System.Rewrite(F);
try
slWriteChange(F, length(FFromStr), length(FToStr));
finally
System.Close(F);
end;
end;
Ниже показан текстовый файл, который был сгенерирован для преобразования слова "illiteracy" в слово "innumeracy".
< - i
<- l
<- l
i
<- t
-> n
-> n
-> u
-> m
e
r
a
с
y
Это представление действий по редактированию легко доступно для понимания, но при необходимости его можно развернуть. Как видите, наиболее длинная общая подпоследовательностью является (i, e, r, a, c, y), а определение удалений и вставок не представляет сложности.
Читать дальшеИнтервал:
Закладка: