Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi
- Название:Фундаментальные алгоритмы и структуры данных в Delphi
- Автор:
- Жанр:
- Издательство:ДиаСофтЮП
- Год:2003
- ISBN:ISBN 5-93772-087-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi краткое содержание
Книга "Фундаментальные алгоритмы и структуры данных в Delphi" представляет собой уникальное учебное и справочное пособие по наиболее распространенным алгоритмам манипулирования данными, которые зарекомендовали себя как надежные и проверенные многими поколениями программистов. По данным журнала "Delphi Informant" за 2002 год, эта книга была признана сообществом разработчиков прикладных приложений на Delphi как «самая лучшая книга по практическому применению всех версий Delphi».
В книге подробно рассматриваются базовые понятия алгоритмов и основополагающие структуры данных, алгоритмы сортировки, поиска, хеширования, синтаксического разбора, сжатия данных, а также многие другие темы, тесно связанные с прикладным программированием. Изобилие тщательно проверенных примеров кода существенно ускоряет не только освоение фундаментальных алгоритмов, но также и способствует более квалифицированному подходу к повседневному программированию.
Несмотря на то что книга рассчитана в первую очередь на профессиональных разработчиков приложений на Delphi, она окажет несомненную пользу и начинающим программистам, демонстрируя им приемы и трюки, которые столь популярны у истинных «профи». Все коды примеров, упомянутые в книге, доступны для выгрузки на Web-сайте издательства.
Фундаментальные алгоритмы и структуры данных в Delphi - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Разрешение конфликтов посредством группирования
Существует разновидность метода связывания для разрешения конфликтов, которая носит название группирования в блоки (bucketing). Вместо помещения связного списка в каждую ячейку, в нее помещается группа, которая по существу представляет собой массив элементов фиксированного размера. При создании хеш-таблицы необходимо выделить группу для каждой ячейки и пометить все элементы в каждой группе как "пустые".
Чтобы вставить элемент, мы хешируем ключ элемента с целью определения номера ячейки. Затем мы просматриваем все элементы в группе, пока не обнаружим элемент, помеченный как пустой, и присваиваем его элементу, который пытаемся вставить (понятно, что в случае присутствия элемента в группе генерируется ошибка).
Но что делать, если в группе больше нет пустых элементов? В этом случае доступны две возможности. Первая соответствует применению подхода линейного зондирования, а вторая - использованию групп переполнения.
Если в нужной группе не хватает места, первая возможность заключается в просмотре группы в следующей ячейке и проверке наличия в ней свободного места. Мы продолжаем выполнять эти действия, пока не отыщем пустой элемент, после чего вставляем в него элемент. Этот метод является прямой аналогией алгоритма линейного зондирования (действительно, если длина всех групп равна одному элементу, этот метод является методом линейного зондирования). Следовательно, он сопряжен с такими же проблемами. Например, удаление элементов из хеш-таблицы требует разрыва цепочек зондирования. Если группа не заполнена полностью, можно просто удалить из нее элемент и по одному переместить вверх элементы в группе. Если группа заполнена полностью, элементы этой группы могут вызывать переполнение, переходя в следующую, поэтому мы вынуждены либо помечать элемент как удаленный, либо повторять вставку последующих элементов, включая элементы в следующих группах, пока не встретится пустой элемент группы.
Вторая возможность заключается в использовании групп переполнения. В этом случае хеш-таблица содержит дополнительную группу, которая не используется при обычном применении хеш-таблицы. Эту группу называют группой переполнения (overflow bucket). Если при вставке элемента в группе места под него не оказывается, мы ищем пустой элемент в группе переполнения и вставляем элемент туда. Таким образом, группа переполнения содержит элементы переполнения всех обычных групп. Если сама группа переполнения заполняется, мы просто выделяем еще одну группу и продолжаем выполнять описанные операции. Поиск элемента в этой структуре данных предполагает просмотр каждого элемента в группе, в которую был хеширован ключ, и, если она заполнена, - просмотр каждого элемента в каждой группе переполнения, пока не будет найден пустой элемент. Удаление элемента из такой хеш-таблицы настолько не эффективно, что может оказаться вообще невозможным. Единственный целесообразный метод удаления - пометка элементов как удаленных. В противном случае, при необходимости удалить элемент из правильно заполненной группы придется повторно вставить каждый элемент, который присутствует в группах переполнения.
Так зачем же вообще рассматривать группирование? Что ж, вероятно, это лучшая структура данных для хеш-таблиц, хранящихся на диске.
Хеш-таблицы на диске
Контроллеры для таких устройств постоянного хранения данных, как жесткие и гибкие диски, дисководы Iomega Zip и ленточные накопители разработаны для поблочного считывания и записи данных. Обычно размер этих блоков равен какой-то степени двойки, например, 512, 1024 или 4096 байт. Поскольку контроллер должен выполнить считывание всего блока даже в том случае, когда требуется всего несколько байт, имеет смысл попытаться извлечь выгоду из подобного поведения.
Предположим, что требуется создать приложение, в котором используется большое количество записей, хранящихся на диске. Записи должны быть доступны в произвольном порядке по ключу. При этом каждая запись имеет отдельный уникальный строковый ключ. Это - идеальное применение для хеш-таблицы, однако записи столь многочисленны и велики, что невозможно выполнить их одновременное считывание в память. Действительно, делать это не имеет смысла, поскольку можно предположить, что большинство из них не будет требоваться в ходе любого отдельного сеанса работы программы.
Примером такого применения служит система пункта продажи в большом продуктовом супермаркете. В магазине могут продаваться сотни тысяч различных наименований товаров, из которых средний покупатель приобретает, скажем, не больше сотни (а то и десятка). Это идеальное применение для хеш-таблицы: каждый товар в магазине известен по его всемирному шифру продукта (UPC -Universal Product Code), т.е. 12-значному строковому значению, которое представляет собой уникальный ключ каждого товара. С учетом этого, приложение в кассовом пункте использует сканированный универсальный код товара с целью его хеширования в хеш-таблицу, а затем в запись, соответствующую товару.
Однако обратите внимание, что хранящаяся на диске хеш-таблица подходит только для обработки типа извлечения данных: получив ключ, она возвращает запись. Подобно своему аналогу, хранящемуся в памяти, хеш-таблица на диске не подходит для последовательного извлечения записей.
Прежде всего, создадим файл данных, состоящий из множества записей одинакового размера, каждая из которых описывает отдельный элемент. Естественно, для этого мы будем использовать класс TtdRecordFile, описанный в главе 2.
Файл индексов - это, по сути дела, второй файл базы данных хеш-информации. Как и в предыдущем случае, нам не нужно считывать в память весь файл индексов. Например, если бы каждый ключ содержал 10 цифр, а связанный с каждым ключом номер записи имел бы длину, равную 4 байтам, для хранения одного ключа требовалось бы 15 байт (исходя из предположения, что ключ содержит либо ноль в качестве символа-ограничителя, либо байт-префикс, определяющий его длину). Если бы хеш-таблица содержала 100 000 элементов, то для хранения ее индексов в памяти потребовалось бы минимум 1 500 000 байт. Разумеется, мы еще и выделяем дополнительную память под хранение строк ключей хеш-таблицы в куче, что приведет к еще большим накладным расходам (например, в 32-разрядной системе каждая строка кучи содержит три дополнительных символа типа longint). Значительно целесообразнее было бы считывать фрагменты индекса, когда в них возникает необходимость.
Применим метод группирования. В индексе хеш-таблицы мы используем группы фиксированного размера, чтобы при наличии ключа его можно было хешировать с целью получения требуемого номера группы, выполнить его считывание из файла индекса, а затем выполнить поиск требуемого ключа в группе. Эта методика выглядит достаточно простой, но, естественно, при этом необходимо предусмотреть действия на случай переполнения группы.
Читать дальшеИнтервал:
Закладка: