Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi
- Название:Фундаментальные алгоритмы и структуры данных в Delphi
- Автор:
- Жанр:
- Издательство:ДиаСофтЮП
- Год:2003
- ISBN:ISBN 5-93772-087-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi краткое содержание
Книга "Фундаментальные алгоритмы и структуры данных в Delphi" представляет собой уникальное учебное и справочное пособие по наиболее распространенным алгоритмам манипулирования данными, которые зарекомендовали себя как надежные и проверенные многими поколениями программистов. По данным журнала "Delphi Informant" за 2002 год, эта книга была признана сообществом разработчиков прикладных приложений на Delphi как «самая лучшая книга по практическому применению всех версий Delphi».
В книге подробно рассматриваются базовые понятия алгоритмов и основополагающие структуры данных, алгоритмы сортировки, поиска, хеширования, синтаксического разбора, сжатия данных, а также многие другие темы, тесно связанные с прикладным программированием. Изобилие тщательно проверенных примеров кода существенно ускоряет не только освоение фундаментальных алгоритмов, но также и способствует более квалифицированному подходу к повседневному программированию.
Несмотря на то что книга рассчитана в первую очередь на профессиональных разработчиков приложений на Delphi, она окажет несомненную пользу и начинающим программистам, демонстрируя им приемы и трюки, которые столь популярны у истинных «профи». Все коды примеров, упомянутые в книге, доступны для выгрузки на Web-сайте издательства.
Фундаментальные алгоритмы и структуры данных в Delphi - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Вернемся немного назад, и вставим элементы в пустую хеш-таблицу, как это было сделано ранее. Выполняемые при этом действия показаны на рис. 7.1. Мы начинаем с каталога только с одной записью с индексом 0 (а). Принято считать, что в подобной ситуации разрядная глубина равна 0. Мы заполняем единственную группу (назовем ее А) и теперь ее нужно разбить. Вначале мы увеличиваем разрядную глубину каталога до 1. Иначе говоря, теперь он будет содержать две записи (b). В результате будут созданы две группы, на первую из которых указывает запись 0 (исходная запись А), а на вторую - запись 1, В (с). Все элементы, хеш-значения которых завершаются разрядом 0, помещаются в группу А, а остальные - в группу В. Снова заполним группу A. Теперь разрядную глубину каталога необходимо увеличить с 1 до 2, чтобы получить четыре группы, доступных для вставки. Перед разделением заполненной группы записи каталога 00 и 01 будут указывать на исходную группу А, а записи 10 и 11 - на группу В (d). Группа А разбивается на группу, которая принимает хеш-значения с окончанием 00 (снова А), и группу, которая принимает хеш-значения с окончанием 10, С. На группу А будет указывать запись 00 каталога, а на группу С - запись 01 (e). И, наконец, группа С (на которую указывает запись 01 каталога) заполняется. Нужно снова увеличить разрядную глубину каталога, на этот раз до трех разрядов.
Рисунок 7.1.Вставка в расширяемую хеш-таблицу

Теперь записи 000 и 001 указывают на запись А, записи 010 и 011- на группу С, а 100, 101, 110 и 111 - на группу В (f). Мы создаем новую группу D и повторяем вставку всех элементов группы С в группы С и D, причем первая группа, которой соответствует запись каталога 010 (2), принимает хеш-значения с окончанием 010, а вторая, которой соответствует запись каталога 011 (3), - хеш-значения с окончанием 110 (g).
Теперь, когда мы рассмотрели основной алгоритм, пора применить его на практике. Прежде всего, отметим следующее: все фрагменты расширяемой хеш-таблицы хранятся в отдельных файлах: каталога, группы и записей. Для хранения групп и записей мы используем класс TtdRecordStream (в действительности мы будем использовать производный от него класс TtdRecordFile, ориентированный на использование файлов, но внутри программы мы будем считать, что применительно к расширяемой хеш-таблице этот класс является простым потоком). Каталог может храниться и извлекаться из любого класса, производного от TStream, но понятно, что длительного хранения целесообразно использовать класс TFileStream.
Извлечение и реализация каталога - следующая по сложности задача. Код интерфейса для ее выполнения приведен в листинге 7.20.
Листинг 7.20. Интерфейс класса TtdHashDirectory
type
TtdHashDirectory = class private
FCount : integer;
FDepth : integer;
FList : TList;
FName : TtdNameString;
FStream : TStream;
protected
function hdGetItem(aInx : integer): longint;
procedure hdSetItem(aInx : integer; aValue : longint);
function hdErrorMsg(aErrorCode : integer;
const aMethodName : TtdNameString; aIndex : integer): string;
procedure hdLoadFromStream;
procedure hdStoreToStream;
public
constructor Create(aStream : TStream);
destructor Destroy; override;
procedure DoubleCount;
property Count : integer read FCount;
property Depth : integer read FDepth;
property Items [aInx : integer] : longint read hdGetItem write hdSetItem; default;
property Name : TtdNameString read FName write FName;
end;
Для выполнения поставленной задачи этого общедоступного интерфейса вполне достаточно. Мы можем удвоить количество элементов в каталоге, используя метод DoubleCount, и можем получать текущие номера элементов (свойство Count) и разрядную глубину каталога (свойство Depth). Теоретически, мы могли бы обойтись только одним свойством, поскольку Count = 2Depth. Но поддержание обоих свойств - менее трудоемкая задача по сравнению с вычислением степени двух, когда это потребуется. И, наконец, мы может обратиться к отдельным элементам, хранящимся в каталоге в виде значений типа длинных целых. Естественно, эти значения будут номерами групп.
Разделы private и protected содержат еще несколько методов и полей. Во-первых, это методы set и get свойства Items, а, во-вторых, - два метода, предназначенные для выполнения считывания и записи каталога в и из потока. Кроме того, как мы видим, реальным контейнером записей каталога является экземпляр TList.
В листинге 7.21 конструктор создает экземпляр каталога хеш-таблицы, внутренний объект TList и при необходимости выполняет автоматическое считывание из потока.
Листинг 7.21. Создание экземпляра класса TtdHashDirectory
constructor TtdHashDi rector Y.Create(aStrearn : TStream);
begin
Assert(sizeof(pointer) = sizeof(longint), hdErrorMsg(tdePointerLongSize, 1 Create1, 0));
{создать предка}
inherited Create;
{создать каталог как TList}
FList := TList.Create;
FStream := aStream;
{если поток не содержит никаких данных, то инициализировать каталог с одной записью и глубиной равной 0}
if (FStream.Size = 0) then begin
FList.Count := 1;
FCount := 1;
FDepth := 0;
end
{в противном случае выполнить загрузку из потока}
else
hdLoadFromS trearn;
end;
procedure TtdHashDirectory.hdLoadFromStream;
begin
FStream.Seek(0, soFromBeginning);
FStream.ReadBuffer(FDepth, sizeof(FDepth));
FStream.ReadBuffer(FCount, sizeof(FCount));
FList.Count := FCount;
FStream.ReadBuffer(FList.List^, FCount * sizeof(longint));
end;
Я оставил оператор Assert в конструкторе Create. Он проверяет равенство размера указателя размеру значения longint. Это связано с тем, что я немного "схитрил", сохраняя значения каталога непосредственно в TList в виде однотипных указателей. При изменении размера указателя или longint, используемый метод работать не будет. Поэтому, просто на всякий случай, я поместил здесь это утверждение. Если впоследствии компилятор будет генерировать сообщение об ошибке, это можно будет исправить. Если же нет, то во время выполнения будет выводиться сообщение о нарушении утверждения.
А пока что LoadFromStream выполняет минимальную проверку для проверки наличия допустимого каталога в потоке. Поскольку считывание выполняется непосредственно из потока в буфер фиксированного размера, в будущем, возможно, имеет смысл несколько усовершенствовать процесс, включив сигнатуру в поток или добавив проверку с применением циклического избыточного кода и т.п.
Уничтожение экземпляра каталога хеш-таблицы (листинг 7.22) требует считывания его текущего содержимого обратно в поток и освобождения внутреннего объекта TList.
Листинг 7.22. Уничтожение экземпляра класса TtdHashDirectory
destructor TtdHashDirectory.Destroy;
begin
hdStoreToStream;
FList.Free;
inherited Destroy;
end;
procedure TtdHashDirectory.hdStoreToStream;
begin
FStream.Seek(0, soFromBeginning);
FStream.WriteBuffer(FDepth, sizeof(FDepth));
FStream.WriteBuffer(FCount, sizeof(FCount));
FStream.WriteBuffer(FList.List'4, FCount * sizeof(longint));
end;
Методы предка (листинг 723) свойства Items просто извлекают данные, однотипные longint, из внутреннего объекта TList.
Листинг 7.23. Установка и извлечение значений каталога
function TtdHashDirectory.hdGetItem(aInx : integer): longint;
begin
Assert( (0 <= aInx) and (aInx < FList.Count),
hdErrorMsg(tdeIndexOutOfBounds, 'hdGetItem', aInx));
Result := longint(FList.List^[aInx]);
Читать дальшеИнтервал:
Закладка: