Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi

Тут можно читать онлайн Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi - бесплатно полную версию книги (целиком) без сокращений. Жанр: comp-programming, издательство ДиаСофтЮП, год 2003. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Фундаментальные алгоритмы и структуры данных в Delphi
  • Автор:
  • Жанр:
  • Издательство:
    ДиаСофтЮП
  • Год:
    2003
  • ISBN:
    ISBN 5-93772-087-3
  • Рейтинг:
    3.5/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi краткое содержание

Фундаментальные алгоритмы и структуры данных в Delphi - описание и краткое содержание, автор Джулиан Бакнелл, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга "Фундаментальные алгоритмы и структуры данных в Delphi" представляет собой уникальное учебное и справочное пособие по наиболее распространенным алгоритмам манипулирования данными, которые зарекомендовали себя как надежные и проверенные многими поколениями программистов. По данным журнала "Delphi Informant" за 2002 год, эта книга была признана сообществом разработчиков прикладных приложений на Delphi как «самая лучшая книга по практическому применению всех версий Delphi».

В книге подробно рассматриваются базовые понятия алгоритмов и основополагающие структуры данных, алгоритмы сортировки, поиска, хеширования, синтаксического разбора, сжатия данных, а также многие другие темы, тесно связанные с прикладным программированием. Изобилие тщательно проверенных примеров кода существенно ускоряет не только освоение фундаментальных алгоритмов, но также и способствует более квалифицированному подходу к повседневному программированию.

Несмотря на то что книга рассчитана в первую очередь на профессиональных разработчиков приложений на Delphi, она окажет несомненную пользу и начинающим программистам, демонстрируя им приемы и трюки, которые столь популярны у истинных «профи». Все коды примеров, упомянутые в книге, доступны для выгрузки на Web-сайте издательства.

Фундаментальные алгоритмы и структуры данных в Delphi - читать онлайн бесплатно полную версию (весь текст целиком)

Фундаментальные алгоритмы и структуры данных в Delphi - читать книгу онлайн бесплатно, автор Джулиан Бакнелл
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

TtdChildType = ( {типы дочерних узлов}

ctLeft, {.. левый дочерний узел}

ctRight);

{.. правый дочерний узел}

TtdRBColor = ( {цвета для красно-черного дерева}

rbBlack, {..черный}

rbRed);

{..красный}

PtdBinTreeNode = ^TtdBinTreeNode;

TtdBinTreeNode = packed record btParent : PtdBinTreeNode;

btChild : array [TtdChildType] of PtdBinTreeNode;

btData : pointer;

case boolean of

false : (btExtra : longint);

true : (btColor : TtdRBColor);

end;

Обратите внимание, что две дочерние связи мы определили в виде двухэлементного массива. На первый взгляд, это может показаться излишним, но когда дело дойдет до реализации операций с бинарным деревом, такое определение существенно упростит нашу задачу. Кроме того, узел бинарного дерева объявляет дополнительное поле, которое не требуется для обычных бинарных деревьев, однако упрощает задачу для красно-черного варианта дерева бинарного поиска.

Создание бинарного дерева

Само по себе создание бинарного дерева тривиально. В простейшем случае корневой узел бинарного дерева определяет все бинарное дерево.

var

MyBinaryTree : PtBinTreeNode;

Если MyBinaryTree равен nil, никакого бинарного дерева не существует, поэтому это значение служит начальным значением бинарного дерева.

{инициализировать бинарное дерево}

MyBinaryTree :=nil;

На практике принято использовать фиктивный узел, аналогичный фиктивному заглавному узлу односвязного списка, чтобы каждый реальный узел дерева, включая корневой, имел родительский узел. Корневой узел может быть как левым, так и правым дочерним узлом фиктивного узла, но для определенности примем, что он является левым.

Вставка и удаление с использованием бинарного дерева

Если мы всерьез намереваемся использовать бинарное дерево, необходимо рассмотреть, как выполняется добавление в дерево элементов (т.е. узлов), удаление элементов из дерева и посещение всех элементов дерева. Последняя операция позволит выполнять поиск конкретного элемента. Поскольку выполнение последних двух операций невозможно без рассмотрения первой, начнем с рассмотрения вставки узла в бинарное дерево.

Чтобы иметь возможность вставить узел в бинарное дерево, необходимо выбрать родительский узел, к которому можно присоединить новый узел в качестве дочернего, и более того, этот узел не может уже иметь два дочерних узла. Мы должны также знать, каким дочерним узлом - левым или правым - должен стать новый узел.

При заданном родительском узле и указании дочерних узлов слева направо код для вставки узла очень прост. Мы создаем узел, устанавливаем в качестве значения его поля данных элемент, который добавляем в дерево, и определяем обе его дочерние связи как nil. Затем, во многом подобно вставке узла в двусвязный список, мы устанавливаем соответствующий дочерний указатель родительского узла так, чтобы он указывал на новый дочерний узел, а )родительский указатель дочернего узла - на родительский узел.

Листинг 8.2. Вставка в бинарное дерево

function TtdBinaryTree.InsertAt(aParentNode : PtdBinTreeNode;

aChildType : TtdChildType; aItem : pointer): PtdBinTreeNode;

begin

{если родительский узел является нулевым, считаем, что выполняется вставка корневого узла}

if (aParentNode = nil) then begin

aParentNode := FHead;

aChildType :=ctLeft;

end;

{выполнить проверку mos о, установлена ли уже дочерняя связь}

if (aParentNode^.btChild[aChildType]<> nil) then

btError(tdeBinTreeHasChild, 'InsertAt');

{распределить новый узел и вставить в качестве требуемого дочернего узла родительского узла}

Result := BTNodeManager.AllocNode;

Result^.btParent := aParentNode;

Result^.btChild[ctLeft] :=nil;

Result^.btChild[ctRight] := nil;

Result^.btData := aItem;

Result^.btExtra := 0;

aParentNode^.btChild[aChildType] := Result;

inc(FCount);

end;

Обратите внимание, что приведенный в листинге 8.2 код вначале проверяет, является ли добавляемый узел корневым. Если да, то переданный родительский узел равен nil. В этом случае метод инициализирует родительский узел значением внутреннего заглавного узла.

Кроме этой проверки метод InsertAt убеждается, что дочерняя связь, которую предполагается использовать для нового узла, действительно не используется. В противном случае это будет грубой ошибкой.

Обратите внимание, что класс бинарного дерева (составной частью которого является этот метод) использует диспетчер узлов для распределения и освобождения узлов. Поскольку все узлы имеют одинаковый размер, в этом, как было сказано в главе 3, заложен глубокий смысл.

А как выполняется удаление узлов? Эта задача несколько сложнее, поскольку узел может иметь один или два дочерних узла. Первое правило удаления может быть сформулировано следующим образом: листовой узел (т.е. не имеющий дочерних узлов) может быть удален без каких-либо нежелательных последствий. При этом мы выясняем, каким дочерним узлом родительского узла является лист, и устанавливаем соответствующую дочернюю связь равной nil. После этого узел может быть освобожден.

Второе правило удаления из бинарного дерева применяется в отношении случая, когда удаляемый узел имеет один дочерний узел. Эта задача также достаточно проста: мы просто перемещаем дочерний узел вверх по дереву, чтобы он стал тем же дочерним узлом родительского узла, каким является удаляемый узел.

Третье правило применяется к случаю, когда удаляемый узел имеет два дочерних узла. Как и можно было предположить, это правило звучит просто: узел не может быть удален. Попытка сделать это является ошибкой. Позже мы рассмотрим вариант бинарного дерева - дерево бинарного поиска, - который содержит достаточный объем дополнительной внедренной в дерево информации, чтобы можно было обойти это ограничение.

Листинг 8.3. Удаление из бинарного дерева

procedure TtdBinaryTree.Delete(aNode : PtdBinTreeNode);

var

OurChildsType : TtdChildType;

OurType : TtdChildType;

begin

if (aNode = nil) then

Exit;

{выяснить, имеется ли единственный дочерний узел, и то, каким узлом он является; при наличии двух дочерних узлов сгенерировать ошибку}

if (aNode^.btChild[ctLeft] <> nil) then begin

if (aNode^.btChild[ctRight] <> nil) then

btError(tdeBinTree2Children, 'Delete');

OurChildsType :=ctLeft;

end

else

OurChildsType :=ctRight;

{выяснить, является ли дочерний узел левым или правым дочерним узлом данного родительского узла}

OurType := GetChildType(aNode);

{установить дочернюю связь данного родительского узла равной данной дочерней связи}

aNode^.btParent^.btChild[OurType] := aNode^.btChild[OurChildsType];

if (aNode^.btChild[OurChildsType] <> nil) then

aNode^.btChild[OurChildsType]^.btParent := aNode^.btParent;

{освободить узел}

if Assigned(FDispose) then

FDispose(aNode^.btData);

BTNodeManager.FreeNode(aNode);

dec(FCount);

end;

В листинге 8.3 не учтен случай, когда удаляемый узел является нулевым. В любом случае в этой ситуации мало что можно сделать, а генерация исключения была бы излишней. Поэтому метод проверяет, чтобы удаляемый узел не имел двух дочерних узлов. Однако он не разделяет два других случая удаления (т.е. случаи отсутствия дочерних узлов и наличия только одного дочернего узла), а объединяет их в один случай, когда один дочерний узел замещает узел, даже если дочерний узел является нулевым. GetChildType - это небольшая функция, которая возвращает информацию о том, является ли ее параметр узла левым или правым дочерним узлом родительского узла.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Джулиан Бакнелл читать все книги автора по порядку

Джулиан Бакнелл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Фундаментальные алгоритмы и структуры данных в Delphi отзывы


Отзывы читателей о книге Фундаментальные алгоритмы и структуры данных в Delphi, автор: Джулиан Бакнелл. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x