Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi
- Название:Фундаментальные алгоритмы и структуры данных в Delphi
- Автор:
- Жанр:
- Издательство:ДиаСофтЮП
- Год:2003
- ISBN:ISBN 5-93772-087-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джулиан Бакнелл - Фундаментальные алгоритмы и структуры данных в Delphi краткое содержание
Книга "Фундаментальные алгоритмы и структуры данных в Delphi" представляет собой уникальное учебное и справочное пособие по наиболее распространенным алгоритмам манипулирования данными, которые зарекомендовали себя как надежные и проверенные многими поколениями программистов. По данным журнала "Delphi Informant" за 2002 год, эта книга была признана сообществом разработчиков прикладных приложений на Delphi как «самая лучшая книга по практическому применению всех версий Delphi».
В книге подробно рассматриваются базовые понятия алгоритмов и основополагающие структуры данных, алгоритмы сортировки, поиска, хеширования, синтаксического разбора, сжатия данных, а также многие другие темы, тесно связанные с прикладным программированием. Изобилие тщательно проверенных примеров кода существенно ускоряет не только освоение фундаментальных алгоритмов, но также и способствует более квалифицированному подходу к повседневному программированию.
Несмотря на то что книга рассчитана в первую очередь на профессиональных разработчиков приложений на Delphi, она окажет несомненную пользу и начинающим программистам, демонстрируя им приемы и трюки, которые столь популярны у истинных «профи». Все коды примеров, упомянутые в книге, доступны для выгрузки на Web-сайте издательства.
Фундаментальные алгоритмы и структуры данных в Delphi - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
else begin
{затолкнуть узел, а за ним - нулевой указатель}
Stack.Push(Node);
Stack.Push(nil);
{затолкнуть правый дочерний узел, если он не нулевой}
if (Node^.btChild[ctRight] <> nil) then
Stack.Push(Node^.btChild[ctRight]);
{затолкнуть левый дочерний узел, если он не нулевой}
if (Node^.btChild[ctLeft] <> nil) then
Stack.Push(Node^.btChild[ctLeft]);
end;
end;
finally
{уничтожить стек}
Stack.Free;
end;
end;
Как и ранее, по тем же причинам, метод предполагает, что дерево является не пустым.
Обход по уровням
Мы еще не рассматривали обход по уровням, при котором вначале посещается корневой узел, затем слева направо посещаются два возможных узла на первом уровне, затем слева направо четыре возможных узла на втором уровне и т.д. Этот метод обхода кажется слишком сложным для кодирования, но в действительности он очень прост. Достаточно знать один прием. Он заключается в следующем применении очереди. Поместим корневой узел в очередь, и будем выполнять цикл до тех пор, пока очередь не опустеет. Удалим из очереди верхний узел. Посетим его. Если его левая дочерняя связь является ненулевой, поместим ее в очередь. Если правая дочерняя связь является ненулевой, поместим в очередь и ее. Если очередь не пуста, снова выполним цикл. Вот, собственно, и все.
Листинг 8.8. Обход по уровням
function TtdBinaryTree.btLevelOrder(aAction : TtdVisitProc;
aExtraData : pointer): PtdBinTreeNode;
var
Queue : TtdQueue;
Node : PtdBinTreeNode;
StopNow : boolean;
begin
{предположим, что мы не добрались до выбранного узла}
Result := nil;
StopNow := false;
{создать очередь}
Queue := TtdQueue.Create(nil);
try
{поместить корневой узел в очередь}
Queue.Enqueue(FHead^.btChild[ctLeft]);
{продолжать процесс до тех пор, пока очередь не опустеет}
while not Queue.IsEmpty do
begin
{извлечь узел в начале очереди}
Node := Queue.Dequeue;
{выполнить действия с ним. Если в результате возвращается запрос на прекращение обхода, вернуть этот узел}
aAction(Node^.btData, aExtraData, StopNow);
if StopNow then begin
Result :=Node;
Queue.Clear;
end
{в противном случае продолжить процесс}
else begin
{поместить в очередь левый дочерний узел, если он не нулевой}
if (Node^.btChild[ctLeft]<> nil) then
Queue.Enqueue(Node^.btChild[ctLeft]);
{поместить в очередь правый дочерний узел, если он не нулевой}
if (Node^.btChild[ctRight] <> nil) then
Queue.Enqueue(Node^.btChild[ctRight]);
end;
end;
finally
{уничтожить очередь}
Queue.Free;
end;
end;
Подобно методам нерекурсивного обхода, метод btLevelOrder должен вызываться только для дерева, которое является непустым.
Реализация класса бинарных деревьев
Как и в случае остальных уже рассмотренных структур данных, мы реализуем стандартное бинарное дерево в виде класса. Действительно, мы уже положили начало такому подходу, рассмотрев различные методы готового класса.
В идеале, как, например, это было сделано для связных списков, желательно освободить пользователя класса от необходимости разбираться в структуре узлов (это позволит нам впоследствии изменять их структуру, не причиняя неудобств пользователю класса). Но в случае использования обычных бинарных деревьев приходится предполагать наличие у пользователя определенных знаний о структуре узлов, которые позволяют ему вставить новый узел (пользователь должен сообщить классу дерева, какой узел является родительским, и каким дочерним узлом становится новый узел). Поэтому наша реализация будет "черным ящиком" не совсем в той степени, в какой хотелось бы.
Класс бинарного дерева будет поддерживать такие стандартные операции, как вставка и удаление. Кроме того, его метод Traverse будет поддерживать различные виды обхода. Одним из методов, который мог бы обеспечить определенные преимущества при решении задач, подобных синтаксическому анализу выражений, была бы операция объединения двух деревьев в новый корневой узел.
Листинг 8.9. Интерфейс класса бинарного дерева
type
TtdBinaryTree - class {класс бинарного дерева}
private
FCount : integer;
FDispose : TtdDisposeProc;
FHead : PtdBinTreeNode;
FName : TtdNameString;
protected
procedure btError(aErrorCode : integer;
const aMethodName : TtdNameString);
function btLevelOrder(aAction : TtdVisitProc;
aExtraData : pointer): PtdBinTreeNode;
function btNoRecInOrder(aAction : TtdVisitProc;
aExtraData : pointer): PtdBinTreeNode;
function btNoRecPostOrder(aAction : TtdVisitProc;
aExtraData : pointer): PtdBinTreeNode;
function btNoRecPreOrder(aAction : TtdVisitProc;
aExtraData : pointer): PtdBinTreeNode;
function btRecIn0rder(aNode : PtdBinTreeNode; aAction : TtdVisitProc;
aExtraData : pointer): PtdBinTreeNode;
function btRecPostOrder(aNode : PtdBinTreeNode; aAction : TtdVisitProc;
aExtraData : pointer): PtdBinTreeNode;
function btRecPreOrder(aNode : PtdBinTreeNode; aAction : TtdVisitProc;
aExtraData : pointer): PtdBinTreeNode;
public
constructor Create(aDisposeItem : TtdDisposeProc);
destructor Destroy; override;
procedure Clear;
procedure Delete(aNode : PtdBinTreeNode);
function InsertAt(aParentNode : PtdBinTreeNode;
aChildType : TtdChildType; aItem : pointer): PtdBinTreeNode;
function Root : PtdBinTreeNode;
function Traverse(aMode : TtdTraversalMode; aAction : TtdVisitProc;
aExtraData : pointer; aUseRecursion : boolean): PtdBinTreeNode;
property Count : integer read FCount;
property Name : TtdNameString read FName write FName;
end;
Как обычно при использовании структур данных, рассмотренных в этой книге, мы убеждаемся, что класс владеет содержащимися в нем данными и, следовательно, может их при необходимости освобождать, или же предполагаем, что обработка данных выполняется из какого-то другого места, и в этом случае дерево не будет освобождать какие-либо данные. Поэтому конструктор Create принимает параметр, определяющий процедуру удаления элемента данных. Если этот параметр является нулевым, дерево не владеет данными и, следовательно, не будет их удалять. Если параметр aDisposeItem является адресом процедуры, эта процедура будет вызываться в каждом случае, когда требуется освободить элемент.
Листинг 8.10. Методы Create и Destroy класса бинарного дерева
constructor TtdBinaryTree.Create(aDisposeItem : TtdDisposeProc);
begin
inherited Create;
FDispose := aDisposeItem;
{проверить, доступен ли диспетчер узлов}
if (BTNodeManager = nil) then
BTNodeManager := TtdNodeManager.Create(sizeof(TtdBinTreeNode));
{выделить заглавный узел; со временем корневой узел дерева станет его левым дочерним узлом}
FHead := BTNodeManager.AllocNodeClear;
end;
destructor TtdBinaryTree.Destroy;
begin
Clear;
BTNodeManager.FreeNode(FHead);
inherited Destroy;
end;
Метод Create убеждается, что диспетчер узлов бинарного дерева активен, а затем выделяет фиктивный заглавный узел. Именно на месте левого дочернего узла этого узла находится корневой узел дерева. Метод Destroy убеждается, что дерево очищено (т.е. все узлы в дереве освобождены), а затем освобождает фиктивный заглавный узел.
Следующий метод, который мы рассмотрим - метод Clear. В данном случае требуется удалить все узлы дерева. Как упоминалось ранее, это выполняется за счет применения обхода всего дерева в глубину. В данном случае мы воспользовались нерекурсивным обходом, поскольку он выполняется быстрее.
Листинг 8.11. Очистка бинарного дерева
procedure TtdBinaryTree.Clear;
var
Stack : TtdStack;
Node : PtdBinTreeNode;
begin
if (FCount = 0) then
Exit;
{создать стек}
Stack := TtdStack.Create(nil);
try
{затолкнуть корневой узел}
Stack.Push(FHead^.btChild[ctLeft]);
{продолжать процесс до тех пор, пока стек не опустеет}
Читать дальшеИнтервал:
Закладка: