Михаил Краснов - Графика DirectX в Delphi
- Название:Графика DirectX в Delphi
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Михаил Краснов - Графика DirectX в Delphi краткое содержание
Графика DirectX в Delphi - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
FDDSImageSphere, nil, DDBLTFAST_WAIT);
// Аналогично с двумя оставшимися сферами
if wrkl = 2
then FDDSBack.BltFast (220, 140 - trunc (sin (Angle + Pi / 4) * 100),
FDDSImageSelect, nil, DDBLTFAST_WAIT)
else FDDSBack.BltFast (220, 140 - trunc (sin (Angle + Pi / 4) * 100),
FDDSImageSphere, nil, DDBLTFAST_WAIT);
if wrkl = 3
then FDDSBack.BltFast (440, 140 - trunc (sin (Angle + Pi / 2) * 100),
FDDSImageSelect, nil, DDBLTFAST_WAIT)
else FDDSBack.BltFast (440, 140 - trunc (sin (Angle + Pi / 2) * 100),
FDDSImageSphere, nil, DDBLTFAST_WAIT);
// Вывод указателя курсора
FDDSBack.BltFast (mouseX, mouseY, FDDSMouse, nil,
DDBLTFAST_WAIT or DDBLTFAST_SRCCOLORKEY);
if Failed (FlipPages)
then Result := RestoreAll
else Result := DD_OK;
end;
Теперь посмотрим функцию выбора:
function TfrmDD.Select (const X, Y : Integer) : Integer;
var
desc : TDDSURFACEDESC2;
Red, Green, Blue : Byte;
Pixel : Word;
begin
Result := -1;
ZeroMemory (@desc, SizeOf(desc));
desc.dwSize := SizeOf(desc) ;
if Failed (FDDSDouble.Lock (nil, desc, DDLOCK_WAIT, 0))
then Exit; // Закрыть не удается, выходим
Pixel := PWord (Integer (desc.IpSurface) + У * desc.lPitch + X * 2)^;
Blue := Pixel and $1F; // Цветовые компоненты пиксела
Green := (Pixel shr 5) and $3F; Red := (Pixel shr 11) and $1F; FDDSDouble.Unlock (nil);
if Blue <> 0 then Result := 3 else // Анализируем результат if Green <> 0 then Result := 2 else
if Red <> 0 then Result := 1 else Result := 0;
end;
Конечно, для этого конкретного примера можно делать выбор просто по координате, но я надеюсь, что сумел достичь данной иллюстрацией понимания, как поступать в случаях, когда подобный анализ получается слишком длинным.
В рассмотренном примере фон не используется. Но если он потребуется, то учтите, что на вспомогательную поверхность его выводить совершенно не нужно.
В некоторых стратегических играх вы можете заметить, что на экране можно выбирать "спрятавшиеся" объекты, закрытые каким-то элементом пейзажа, деревом или горой. На вспомогательной поверхности они не рисуются, поэтому так и происходит.
Также часто возникают ситуации, когда выбор осуществляется неточно, в некотором районе объекта. Это происходит потому, что для повышения скорости работы на вспомогательную поверхность выводятся окрашенные прямоугольники, а не силуэт объекта.
Лупа
В данном разделе мы рассмотрим два любопытных примера, посвященных организации лупы. Задача сама по себе занимательна, но вдобавок мы узнаем кое-что интересное и загадочное.
Запустите проект, располагающийся в каталоге Ех21. По экрану перемещается "лупа", кружок, в пределах которого выводится увеличенный участок фона (рис. 3.10).

В качестве фона в примерах этого раздела я использую, с любезного разрешения автора, работы художника, имя которого присутствует в левом нижнем углу растрового изображения. Псевдоним автора - Beardo, а адрес ею страницы http://home5.swipnet.se/~w-57902/images/art/.
Изобразить увеличенный участок фона - задача не из трудных, мы хорошо усвоили метод Bit поверхности. Проблема состоит в том, чтобы вывести не прямоугольную, а именно круглую лупу. Посмотрим, как это сделано в данном примере.
Поверхность, связанная с лупой, называется FDDSZoom, для нее установлен цветовой ключ - черный цвет. Размер поверхности - 100x100 пикселов.
Все точки этой поверхности, находящиеся за пределами круга "лупы", окрашиваются черным:
function TfrmDD.Circle : HRESULT;
var
desc : TDDSURFACEDESC2;
i, j : Integer;
hRet : HRESULT; begin
ZeroMemory (@desc, SizeOf(desc));
desc.dwSize := SizeOf (desc);
hRet := FDDSZoom.Lock (nil, desc, DDLOCK_WAIT, 0); if Failed (hRet) then begin Result := hRet;
Exit;
end;
for i := 0 to 99 do // Цикл по всем точкам поверхности
for j := 0 to 99 do
// Выделяем точки, располагающиеся за пределами круга "лупы"
if sqr (i - 50} + sqr (j - 50) > 50 * 50 then // Заполняем черным
PWord (Integer(desc.IpSurface) + j * desc.lPitch + i * 2)^ := 0;
Result := FDDSZoom.Unlock (nil);
end;
При отображении цветовой ключ позволяет ограничить вывод растянутой поверхности именно кругом:
// Квадрат, задающий степень увеличения
SetRect (wrkRect, mouseX + 25, mouseY + 25, mouseX + 75, mouseY + 75);
// Растягиваем участок фона
FDDSZoom.Bit (nil, FDDSBackGround, SwrkRect, DDBLT_WAIT, nil);
Circle; // Заполняем черным часть квадрата
// Выводим с цветовым ключом
FDDSBack.BltFast (mouseX, mouseY, FDDSZoom, nil,
DDBLTFAST_WAIT or DDBLTFAST_SRCCOLORKEY);
Выглядит просто и эффектно, но в решении содержится проблема: оно подходит только для черного цвета. Если в качестве ключа использовать любой другой цвет, то на точки, заполненные цветом ключа "вручную", прозрачность распространяться не будет: прозрачными окажутся только участки этого же цвета, но окрашенные вызовом метода поверхности. Разрешить означенную проблему мне не удалось, поскольку плохо понятно, как DirectDraw удается различать такие участки.
Черный цвет для использования его в качестве ключа подходит для этого фона, но пример будет некрасиво работать с фоном, подобным рис. 3.11, где присутствует масса участков именно черного цвета.

В проекте каталога Ех22 приведено другое решение задачи, менее элегантное, но работающее с любыми цветовыми ключами.
Здесь, помимо поверхности FDDSZoom, введена поверхность FDDSDouble. Для первой из них в качестве ключа взят чистый зеленый цвет, как отсутствующий на фоне. Вторая поверхность создается путем загрузки изображения-шаблона - зеленый квадрат с черным кругом посередине. Ключом для нее установлен черный цвет.
Теперь на поверхность лупы последовательно помещаем растянутый участок фона, затем ограничивающий шаблон:
SetRect (wrkRect, mouseX + 25, mouseY + 25, mouseX + 75, mouseY +- 75);
// Растягиваем участок фона
FDDSZoom.Blt (nil, FDDSBackGround, @wrkRect, DDBLT_WAIT, nil);
// Вместо черных участков шаблона останется увеличенный фрагмент
FDDSZoom.BltFast (О, О, FDDSDouble, nil,
DDBLTFASTJMAIT or DDBLTFAST^SRCCOLORKEY);
// Зеленая канва не воспроизведется FDDSBack.BltFast (mouseX, mouseY, FDDSZoom, nil,
DDBLTFAST_WAIT or DDBLTFAST_SRCCOLORKEY);
Позже мы вернемся к задаче с лупой и получим искаженное изображение в ее круге.
Палитры
Для хранения отдельного набора цветовых составляющих палитры используется переменная типа TPaietteEntry. Переменная типа iDirectDrawPaiette, как мы знаем из предыдущих примеров, служит для установления определенной палитры 8-битной поверхности. Обычно такая палитра загружается из растра.
В любой момент времени мы можем получить набор палитры и модифицировать его, как это делается в следующем нашем примере (проект каталога Ех23). За основу взят проект с перемещающимся драконом, но здесь с течением времени экран становится тусклым, имитируется суточная смена освещенности. Дойдя до некоторой фазы, восстанавливается первоначальная яркость. Такой эффект постепенного угасания называется fade (затухание). Разберем, как он создается.
Для хранения первоначальной палитры предназначен массив:
DefPal : Array[0..255] of TPaietteEntry;
Массив заполняется после загрузки палитры из растра, для чего вызывается
Метод Палитры GetEntries:
hRet := FDDpal.GetEntries(0, 0, 256, @DefPal);
if Failed (hRet) then ErrorOut(hRet, 'Palette GetEntries');
При каждом перемещении образа во всех составляющих текущей палитры убавляются веса цветов, используется локальный массив palEntries:
Читать дальшеИнтервал:
Закладка: