Thomas Larsson - Введение в написание скриптов на Питоне для Блендера 2.5x. Примеры кода
- Название:Введение в написание скриптов на Питоне для Блендера 2.5x. Примеры кода
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Thomas Larsson - Введение в написание скриптов на Питоне для Блендера 2.5x. Примеры кода краткое содержание
Третье издание, расширенное и обновлённое для Blender 2.57
Введение в написание скриптов на Питоне для Блендера 2.5x. Примеры кода - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
# File curve.py
#----------------------------------------------------------
import bpy
def createBevelObject():
# Создание Bevel-кривой и объекта
cu = bpy.data.curves.new('BevelCurve', 'CURVE')
ob = bpy.data.objects.new('BevelObject', cu)
bpy.context.scene.objects.link(ob)
# Настройка некоторых атрибутов cu.dimensions = '2D'
cu.resolution_u = 6
cu.twist_mode = 'MINIMUM'
ob.show_name = True
# Координаты управляющих точек
coords = [
(0.00,0.08,0.00,1.00),
(-0.20,0.08,0.00,0.35),
(-0.20,0.19,0.00,1.00),
(-0.20,0.39,0.00,0.35),
(0.00,0.26,0.00,1.00),
(0.20,0.39,0.00,0.35),
(0.20,0.19,0.00,1.00),
(0.20,0.08,0.00,0.35)
]
# Создание сплайна и установка управляющих точек
spline = cu.splines.new('NURBS')
nPointsU = len(coords)
spline.points.add(nPointsU)
for n in range(nPointsU):
spline.points[n].co = coords[n]
# Настройка атрибутов сплайна. Точки, вероятно, должны существовать к этому моменту.
spline.use_cyclic_u = True
spline.resolution_u = 6
spline.order_u = 3
return ob
def createCurveObject(bevob):
# Создание кривой и объекта
cu = bpy.data.curves.new('MyCurve', 'CURVE')
ob = bpy.data.objects.new('MyCurveObject', cu)
bpy.context.scene.objects.link(ob)
# Настройка некоторых атрибутов
cu.bevel_object = bevob
cu.dimensions = '3D'
cu.use_fill_back = True
cu.use_fill_front = True
ob.show_name = True
# Координаты Безье
beziers = [
((-1.44,0.20,0.00), (-1.86,-0.51,-0.36), (-1.10,0.75,0.28)),
((0.42,0.13,-0.03), (-0.21,-0.04,-0.27), (1.05,0.29,0.21)),
((1.20,0.75,0.78), (0.52,1.36,1.19), (2.76,-0.63,-0.14)) ]
# Создание сплайна и установка управляющих точек Безье
spline = cu.splines.new('BEZIER')
nPointsU = len(beziers)
spline.bezier_points.add(nPointsU)
for n in range(nPointsU):
bpt = spline.bezier_points[n]
(bpt.co, bpt.handle_left, bpt.handle_right) = beziers[n]
return ob
def run(origin):
bevob = createBevelObject()
bevob.location = origin
curveob = createCurveObject(bevob)
curveob.location = origin
bevob.select = False
curveob.select = True
bpy.ops.transform.translate(value=(2,0,0))
return
if __name__ == "__main__":
run((0,0,0))
Эта программа иллюстрирует различие между типами кривых: POLY, NURBS и BEZIER.

#----------------------------------------------------------
# File curve_types.py
#----------------------------------------------------------
import bpy
from math import sin, pi
# Poly (многоугольник) и nurbs
def makePolySpline(cu):
spline = cu.splines.new('POLY')
cu.dimensions = '3D'
addPoints(spline, 8)
def makeNurbsSpline(cu):
spline = cu.splines.new('NURBS')
cu.dimensions = '3D'
addPoints(spline, 4)
spline.order_u = 3
return spline
def addPoints(spline, nPoints):
spline.points.add(nPoints-1)
delta = 1/(nPoints-1)
for n in range(nPoints):
spline.points[n].co = (0, n*delta, sin(n*pi*delta), 1)
# Безье
def makeBezierSpline(cu):
spline = cu.splines.new('BEZIER')
cu.dimensions = '3D'
order = 3
addBezierPoints(spline, order+1)
spline.order_u = order
def addBezierPoints(spline, nPoints):
spline.bezier_points.add(nPoints-1)
bzs = spline.bezier_points
delta = 1/(nPoints-1)
for n in range(nPoints):
bzs[n].co = (0, n*delta, sin(n*pi*delta))
print(bzs[n].co)
for n in range(1, nPoints):
bzs[n].handle_left = bzs[n-1].co
for n in range(nPoints-1):
bzs[n].handle_right = bzs[n+1].co
return spline
# Создание кривой с объектом и привязка к сцене
def makeCurve(name, origin, dx):
cu = bpy.data.curves.new('%sCurve' % name, 'CURVE')
ob = bpy.data.objects.new('%sObject' % name, cu)
(x,y,z) = origin ob.location = (x+dx,y,z)
ob.show_name = True
bpy.context.scene.objects.link(ob)
return cu
def run(origin):
polyCurve = makeCurve("Poly", origin, 0)
makePolySpline(polyCurve)
nurbsCurve = makeCurve("NurbsEnd", origin, 1)
spline = makeNurbsSpline(nurbsCurve)
spline.use_endpoint_u = True
nurbsCurve = makeCurve("NurbsNoend", origin, 2)
spline = makeNurbsSpline(nurbsCurve)
spline.use_endpoint_u = False
bezierCurve = makeCurve("Bezier", origin, 3)
makeBezierSpline(bezierCurve)
return
if __name__ == "__main__":
run((0,0,0))
Эта программа добавляет путь и обезьяну с ограничением "следовать по пути" (follow path).

#----------------------------------------------------------
# File path.py
#----------------------------------------------------------
import bpy
def run(origin):
# Создание данных пути и объекта
path = bpy.data.curves.new('MyPath', 'CURVE')
pathOb = bpy.data.objects.new('Path', path)
pathOb.location = origin
bpy.context.scene.objects.link(pathOb)
# Настройка данных пути
path.dimensions = '3D'
path.use_path = True
path.use_path_follow = True
path.path_duration = 250
# Добавление сплайна к пути
spline = path.splines.new('POLY')
spline.use_cyclic_u = True
spline.use_endpoint_u = False
# Добавление точек к сплайну
pointTable = [(0,0,0,0), (1,0,3,0),
(1,2,2,0), (0,4,0,0), (0,0,0,0)]
nPoints = len(pointTable)
spline.points.add(nPoints-1)
for n in range(nPoints):
spline.points[n].co = pointTable[n]
# Добавление обезьяны
bpy.ops.mesh.primitive_monkey_add()
monkey = bpy.context.object
# Добавление ограничения "следовать по пути" обезьяне
cns = monkey.constraints.new('FOLLOW_PATH')
cns.target = pathOb
cns.use_curve_follow = True
cns.use_curve_radius = True
cns.use_fixed_location = False
cns.forward_axis = 'FORWARD_Z'
cns.up_axis = 'UP_Y'
return
if __name__ == "__main__":
run((0,0,0))
bpy.ops.screen.animation_play(reverse=False, sync=False)
Эта программа добавляет источник света "солнце" к сцене, и прожекторы (spot) для каждого объекта рендера на сцене. Каждый прожектор имеет ограничение TrackTo , заставляющее быть направленным на свой объект, тогда как солнце отслеживает центр всех объектов, визуализируемых на сцене.
#----------------------------------------------------------
# File camera.py
# Adds one camera and several lights
#----------------------------------------------------------
import bpy, mathutils, math
from mathutils import Vector
from math import pi
def findMidPoint():
# Нахождение позиции середины всех визуализируемых объектов
sum = Vector((0,0,0))
n = 0
for ob in bpy.data.objects:
if ob.type not in ['CAMERA', 'LAMP', 'EMPTY']:
sum += ob.location
n += 1
if n == 0:
return sum
else:
return sum/n
def addTrackToConstraint(ob, name, target):
# Добавление ограничения TrackTo
cns = ob.constraints.new('TRACK_TO')
cns.name = name
cns.target = target
cns.track_axis = 'TRACK_NEGATIVE_Z'
cns.up_axis = 'UP_Y'
cns.owner_space = 'WORLD'
cns.target_space = 'WORLD'
return
def createLamp(name, lamptype, loc):
# Создание источника освещения
bpy.ops.object.add(
type='LAMP',
location=loc)
ob = bpy.context.object
ob.name = name
lamp = ob.data
lamp.name = 'Lamp'+name
lamp.type = lamptype
return ob
def createLamps(origin, target):
deg2rad = 2*pi/360
sun = createLamp('sun', 'SUN', origin+Vector((0,20,50)))
Интервал:
Закладка: