Дэвид Минделл - Восстание машин отменяется! Мифы о роботизации
- Название:Восстание машин отменяется! Мифы о роботизации
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2016
- Город:Москва
- ISBN:978-5-9614-4694-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дэвид Минделл - Восстание машин отменяется! Мифы о роботизации краткое содержание
Но что останется от наших профессий – ученый, юрист, врач, солдат, водитель и дворник, – когда роботы научатся делать все это?
Профессор Массачусетского технологического института Дэвид Минделл, посвятивший больше двадцати лет робототехнике и океанологии, с уверенностью заявляет, что автономность и искусственный интеллект не несут угрозы. В этой сложной системе связь между человеком и роботом слишком тесная. Жесткие границы, которые мы прочертили между людьми и роботами, между ручным и автоматизированным управлением, только мешают пониманию наших взаимоотношений с робототехникой.
Вместе с автором читатель спустится на дно Тирренского моря, чтобы найти древние керамические сосуды, проделает путь к затонувшему «Титанику», побывает в кабине самолета и узнает, зачем пилоту индикатор на лобовом стекле; найдет ответ на вопрос, почему Нил Армстронг не использовал автоматическую систему для приземления на Луну.
Книга будет интересна всем, кто увлечен самолетами, космическими кораблями, подводными лодками и роботами, влиянием технологий на наш мир.
Восстание машин отменяется! Мифы о роботизации - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Один из способов провести заход на посадку категории III – это использование систем автоматической посадки. Впервые такие системы были введены в эксплуатацию в 1960-е годы в Северной Европе. Авиакомпания British Airways обнаружила, что из-за туманов задерживается 7 % их рейсов в лондонском аэропорту Хитроу. Сочетая стандартные радиомаяки КГС и бортовую инерциальную систему управления, система автоматической посадки может посадить самолет при нулевой видимости, автоматически поднять нос (или «выровнять» самолет) при посадке и управлять тормозами, пока самолет не остановится. Там, где стандартная КГС дает пилоту 60 м для принятия решения о посадке, система автоматической посадки может приблизиться к нулю или CAT IIIc. «Смотрите! Без рук!» – писал пилот Ричард Коллинз, когда проводил полетное тестирование системы автоматической посадки в 1980-е годы.
Автоматическая посадка кажется идеальным решением, великолепной поддержкой для пилотов-людей в трудные моменты. Сегодня большинство самолетов компаний Boeing и Airbus укомплектованы системой автоматической посадки в наборе стандартного оборудования (для самолетов c цифровым электродистанционным управлением полетом система автоматической посадки – это достаточно простое дополнение к существующим системам и программному обеспечению).
Но, несмотря на ее название, система автоматической посадки может быть сложной в обращении. Она требует, чтобы автопилоты были дублированы или троированы и питались от разных электрических систем, а также накладывает ограничения по ветру и неработающему оборудованию – все должно функционировать идеально, только при умеренном встречном ветре и небольших порывах, тогда система автоматической посадки будет работать. Кроме того, эта система – не просто коробка среди оборудования самолета, ей необходима определенная отлаженная инфраструктура на земле, а экипажи и даже авиакомпании должны быть подготовлены и сертифицированы для проведения посадок таких категорий. В Соединенных Штатах сильные ветры часто сочетаются с низкой видимостью, из-за чего систему автоматической посадки использовать нельзя. Но при тумане и низкой облачности с небольшим ветром она может оказать решающее влияние на то, сядет ли самолет или будет направлен в другой аэропорт – даже при самых жестких «нулевых» условиях.
Несмотря на все это, система автоматической посадки не заменяет экипажа полностью. Начнем с того, что пилоты должны решать, когда ее включить. «Капитан несет ответственность за отслеживание и принятие решений, – писал Коллинз. – Он вовлечен в процесс, но находится вне его». Специально подготовленный экипаж должен включить систему, отслеживать ее сбои и взять управление на себя в случае возникновения проблем. Чтобы быть готовыми вмешаться в случае отказа системы автоматической посадки, пилоты могут также держать руки на ручках управления. Ришар де Креспиньи вспоминал об этой системе на своем старом классическом «Боинге-747» как о «банальном механическом приспособлении, состоящем из множества сервомеханизмов и приводов, которое показывало средние результаты, имело среднюю надежность и постоянно нуждалось в проверке».
Современные системы автоматической посадки – это надежные цифровые приборы. Но, если какая-то ошибка произойдет в критически важные моменты посадки, пилот должен включиться в последовательность действий и выбрать одно из них: например, приземлиться вручную, отдать автоматике команду об уходе на второй круг или уйти на него вручную. Поскольку система автоматической посадки требует чрезвычайно высокого уровня точности расположенных на поверхности систем, самолеты на земле должны очистить взлетно-посадочную полосу и прилегающие рулежные дорожки, чтобы не прерывать сигналы радиомаяков, что означает снижение пропускной способности аэропорта, которое иногда достигает 50 %. Согласно данным по меньшей мере одной авиакомпании, пилоты используют систему автоматической посадки только в 2 % случаев, и то во многом лишь для того, чтобы поддерживать соответствие экипажа и оборудования условиям сертификации для минимумов.
Тем не менее система автоматической посадки производит впечатление своей точностью и безопасностью. Коллинз пришел к выводу, что она действительно способна в лучшую сторону изменить стандарты пилота: «При виде такой точности действий любой пилот захочет достичь уровня умений этой компьютеризированной электромеханической штуковины». Тем не менее, согласно отчету рабочей группы по автоматизации Федерального управления гражданской авиации 2013 года, «обстоятельства, требующие и позволяющие совершение посадки в автоматическом режиме, случаются редко, и обычно пилоты предпочитают сажать самолет вручную».
Система автоматической посадки может стать отправной точкой для полностью автоматических, непилотируемых воздушных судов будущего. Но, как мы уже видели на примере глубоководных роботов, эти технологии необязательно должны развиваться в линейной прогрессии от управляемых к автономным. Сейчас существуют другие решения для более глубокой интеграции пилотов в системы управления. Коллиматорный авиационный индикатор или индикатор на лобовом стекле (ИЛС) соединяет сконструированный компьютером виртуальный мир с тем, что пилот видит через лобовое стекло, позволяя сочетать возможности человека и компьютера, чтобы вместе они были способны на большее, чем по отдельности.
Индикаторам на лобовом стекле стоит уделить более пристальное внимание, поскольку они, возможно, предлагают новый подход к роли пилотов: инструктивный. Эти индикаторы демонстрируют, как при помощи новейшей, усложненной технологии человек может выполнять менее автоматизированную, более точно определенную роль.
В ясный весенний день я сидел на откидном сиденье нового реактивного «Эмбраера-190» между первым и вторым пилотом коммерческого рейса, немного позади них. Во время нашего перелета в Женеву (Швейцария) мы направлялись на юго-запад через Германию над северным краем Альп. С высоты 8500 м открывается потрясающий вид на горы. Мы прошли над фантастическим, сверкающим у подножия горы замком Нойшванштайн, который стал образцом для замков Диснея. Затем пролетели над Шварцвальдом и озером Констанц, где был построен дирижабль «Гинденбург». Вдали виднелся Монблан.

«Эмбраер» был двухдвигательным реактивным самолетом, по форме похожим на трансокеанские воздушные суда компаний Boeing и Airbus, но поменьше. Этот региональный реактивный самолет разработали для замены более старых реактивных и винтовых самолетов, летающих на относительно небольшие расстояния и располагающих всеми современными удобствами и средствами безопасности.
Читать дальшеИнтервал:
Закладка: