Дэвид Минделл - Восстание машин отменяется! Мифы о роботизации
- Название:Восстание машин отменяется! Мифы о роботизации
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2016
- Город:Москва
- ISBN:978-5-9614-4694-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Дэвид Минделл - Восстание машин отменяется! Мифы о роботизации краткое содержание
Но что останется от наших профессий – ученый, юрист, врач, солдат, водитель и дворник, – когда роботы научатся делать все это?
Профессор Массачусетского технологического института Дэвид Минделл, посвятивший больше двадцати лет робототехнике и океанологии, с уверенностью заявляет, что автономность и искусственный интеллект не несут угрозы. В этой сложной системе связь между человеком и роботом слишком тесная. Жесткие границы, которые мы прочертили между людьми и роботами, между ручным и автоматизированным управлением, только мешают пониманию наших взаимоотношений с робототехникой.
Вместе с автором читатель спустится на дно Тирренского моря, чтобы найти древние керамические сосуды, проделает путь к затонувшему «Титанику», побывает в кабине самолета и узнает, зачем пилоту индикатор на лобовом стекле; найдет ответ на вопрос, почему Нил Армстронг не использовал автоматическую систему для приземления на Луну.
Книга будет интересна всем, кто увлечен самолетами, космическими кораблями, подводными лодками и роботами, влиянием технологий на наш мир.
Восстание машин отменяется! Мифы о роботизации - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Данная форма автоматизации может быть приемлема для узкого, локального использования (меня не удивит появление таких машин без водителей в нишевых применениях, например для развозки пассажиров в пределах парковок или кампусов колледжей, примерно как это делают монорельсы в аэропортах). Но вождение автомобиля во всей его полноте – социальная активность, которая испытывает влияние всего разнообразия географических, экономических, культурных и других факторов. Google ничего не говорит о том, как их программный код должен учитывать это чудесное многообразие. И, более того, просто потому, что в машинах будут ездить люди, встают непростые вопросы о допустимом риске, надежности и степени вины той или иной стороны в происшествии, на которые необходимо отвечать. У инженеров Google есть привычка постоянно хвалить друг друга за то, что они берутся за самые трудные задачи, но в этом случае они закрыли глаза на все важные и социально значимые проблемы и сделали выбор в пользу узких алгоритмических решений.
И, конечно, даже в случае автономных «гугломобилей» человеческий фактор не теряет своей значимости, просто проявляется по-другому и в другое время. Давайте заглянем внутрь алгоритма, чтобы на примере понять, насколько по-человечески может быть скроен код, который, на первый взгляд, является автономным. Рассмотрим историю первого задокументированного столкновения между автономными автомобилями. В 2007 году в результате Большого технического соревнования, профинансированного Агентством по перспективным оборонным научно-исследовательским разработкам, возник ряд технологий, на которых ныне основывается идея автомобиля от Google. Крис Армсон, инженер Google, был главным инженером победившей тогда команды, и многие из других участников соревнования сейчас тоже работают в Google.
В том происшествии автомобиль Массачусетского технологического института под названием «Талос» [22]обгонял автомобиль Корнеллского университета, который именовался «Скайнет» [23] – у этой машины были проблемы с алгоритмом планирования, и она медленно тарахтела вдоль обочины. Компьютеры на борту «Талос» классифицировали «Скайнет» как «скопление статических объектов», а не как движущийся транспорт, и приняли решение выполнить поворот, объехав это «скопление». Но корнеллская машина на самом деле не стояла на месте, а двигалась, выписывая «кренделя», схему которых «Талос» распознать не сумел. «Скайнет» рванул вперед как раз в тот момент, когда «Талос» начал поворачивать перед его носом, в результате чего оба автомобиля столкнулись, получив незначительные повреждения. Ни та, ни другая команда не выиграла соревнование.
Надо отдать должное командам, которые совместно разобрались с происшедшим и опубликовали все подробности аварии. Повинны были многочисленные алгоритмы и датчики, но ключевую роль сыграла ошибка компьютера массачусетского автомобиля, «не узнавшего» в корнелльской машине движущийся объект и не сумевшего предсказать его возможный путь. По иронии судьбы, стратегия Массачусетского института состояла в том, чтобы избегать предметной классификации дорожных объектов (например, «автомобиль» или «дорожный отбойник»), что сулило множество вероятных ошибок, а взамен лишь делить их на движущиеся и неподвижные. Но правильному анализу данных о скоростях от датчиков машины мешал случайный шум (который бывает в любых данных), поэтому, чтобы фильтровать данные об объектах, компьютер из Массачусетса использовал пороговое значение 3 м/сек. Все, что двигалось быстрее, считалось «движущимся», а все, что медленнее, – «неподвижным».
Откуда взялось это значение порога? Просто один инженер так оценил разницу между движением и неподвижностью и внес это значение в алгоритм. Я спросил моего коллегу Джона Хау, одного из авторов проекта, много ли таких пороговых чисел запрограммировано в системах вроде этой. Он ответил мне: «Очень, очень, очень много…» На самом деле «конфигурационный файл» для автомобиля «Талос» содержал примерно тысячу строк текста, которым устанавливались значения сотен переменных: расположения и данные калибровки датчиков, поправочные коэффициенты для взаимного сопоставления данных датчиков, настройки для борьбы с засветкой от солнца и т. д. Технология машинного обучения может снизить зависимость от предустановленных параметров, но и она зависит от людей-программистов, определяющих ее базовую структуру. Хау отмечает, что действие основных алгоритмов в целом сильно зависит от того, насколько верны модели неопределенности внешних факторов. По его словам, «проблема автономии в своей основе – проблема существования в неопределенном мире».
Этот краткий экскурс в код раннего образца автономной машины раскрывает, насколько глубоко такая «автономность» пронизана результатами человеческих решений в бесчисленных мелких деталях, как, например, то пороговое значение, которое мы наблюдали, а также и в более глубоких аспектах, в частности в используемых моделях неопределенности. Вспомним нашу исходную картину автономности как набора путей передачи входных данных от датчиков, которые трансформируют их в целевые действия. Чудесно наблюдать за тем, как работает такая технология, но ведь за созданием этих путей передачи информации и трансформаций стоят люди.
Именно эти люди, если вы поедете в созданной ими машине, могут вас убить.
Юристы и законоведы лишь начинают изучать проблемы ответственности, связанные с эксплуатацией автомобилей без водителей. Если в вашем понимании автономность – это когда транспортное средство само принимает решения, то цепочка ответственности может оказаться прерванной. Кто будет виноват, если ваш «гугломобиль» свалится вместе с вами в кювет? Этот вопрос касается не только того, что именно юристы пропишут в контрактах, он касается фундаментального понимания автономности: если некая система действительно работает самостоятельно, то как ее производитель может быть виноват, если что-то пойдет не так? (Некоторые полагают, что традиционное понимание ответственности производителя применимо и здесь: если компания выпускает продукт, она же и несет за него ответственность.) С практической точки зрения как можно выдать сертификат безопасности на программное обеспечение для машины без водителя?
Подход к сертификации программного обеспечения систем, от которых зависят жизни людей, наподобие авиалайнеров, хорошо отлажен, но является довольно громоздким и дорогим: он включает тщательное тестирование, при котором каждый элемент кода выполняется хотя бы один раз, и это совмещается с тщательным контролем за изменениями. Те же стандарты применяются при сертификации выполняемых людьми процессов планирования, проектирования и создания кода, удовлетворяющего тщательно продуманным требованиям, и они же распространяются на этапы контроля качества и улучшений кода после его внедрения в действующие системы. Но в своем нынешнем виде эти процедуры неприменимы для систем, которые считаются полностью автономными и где число возможных вариантов действий стремится к бесконечности. И, кроме того, как и системы технического зрения в авиации, автономные машины вроде создаваемых Google должны полагаться на высоконадежные базы данных, которые часто обновляются. Если вы пропустите установку еженедельного обновления, то можете въехать прямо в стройплощадку или кучу снега.
Читать дальшеИнтервал:
Закладка: