Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний

Тут можно читать онлайн Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний - бесплатно полную версию книги (целиком) без сокращений. Жанр: foreign_edu, издательство Литагент Аттикус, год 2017. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    О том, чего мы не можем знать. Путешествие к рубежам знаний
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Аттикус
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    978-5-389-12646-6
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Маркус дю Сотой - О том, чего мы не можем знать. Путешествие к рубежам знаний краткое содержание

О том, чего мы не можем знать. Путешествие к рубежам знаний - описание и краткое содержание, автор Маркус дю Сотой, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
«Хотя эта книга посвящена тому, чего мы знать не можем, также очень важно понять, что мы знаем. В этом путешествии к пределам знаний мы пройдем через области, уже нанесенные учеными на карты, до самых пределов последних на сегодняшний день достижений науки. В пути мы будем задерживаться, чтобы рассмотреть те моменты, когда ученые считали, что зашли в тупик и дальнейшее продвижение вперед невозможно, но следующее поколение исследователей находило иные пути. Это позволит нам по-новому взглянуть на то, что мы сегодня можем считать непознаваемым. Я надеюсь, что к концу нашего путешествия эта книга станет всеобъемлющим обзором не только того, чего мы не можем узнать, но и того, что мы уже знаем».

О том, чего мы не можем знать. Путешествие к рубежам знаний - читать онлайн бесплатно полную версию (весь текст целиком)

О том, чего мы не можем знать. Путешествие к рубежам знаний - читать книгу онлайн бесплатно, автор Маркус дю Сотой
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Очень странная ситуация. Более того, нельзя вычислить заранее, каким именно будет воздействие на импульс. Его можно только измерить впоследствии. Нам доступен только диапазон возможных значений, в пределах которого будет найден импульс при наблюдении. К тому же, если повторить тот же опыт, оказывается, что импульс не определяется условиями эксперимента. Для определения возможного значения импульса имеется только вероятностный механизм.

Численное выражение неопределенности

Принцип неопределенности Гейзенберга дает не просто расплывчатое утверждение общего характера, но численную меру потери знания. Если положение электрона известно с высокой точностью, то его импульс в момент вылета из щели не будет точно равен нулю, а может статистически варьироваться вокруг равного нулю среднего значения. Мы не можем знать, какое значение мы получим при измерении импульса, так как оно все еще неопределенно, но знаем, что возможные значения импульса должны быть статистически распределены по обе стороны от нулевого среднего значения. Можно измерить ширину такого распределения, которую называют стандартным отклонением импульса и обозначают Δ p . Эта величина является статистической мерой разброса возможных значений. Чем больше этот разброс, тем больше значение Δ p и тем более неопределенно значение импульса.

После того как в 1927 г. появилась исходная статья Гейзенберга, описывающая эту странную обратную связь между знанием положения и знанием импульса, Эрл Кеннард, а позднее Говард Робертсон нашли математическое выражение такого балансирования знаний. Если стандартное отклонение разброса возможных положений равно Δ x , а стандартное отклонение разброса возможных значений импульса – Δ p , то эти две величины удовлетворяют следующему неравенству:

где h постоянная Планка то же число которое встречалось нам в объяснении - фото 37

где h – постоянная Планка, то же число, которое встречалось нам в объяснении энергии фотона. Эта формула утверждает, что если погрешность измерения положения, равная Δ x , уменьшается, то для сохранения справедливости соотношения должна увеличиться погрешность измерения импульса, равная Δ p . Математическим следствием из квантовой физики является тот факт, что чем точнее полученное знание о положении частицы, тем более возрастает диапазон ее возможного распределения импульса. Именно это и происходит при пролете электрона через одиночную щель.

Взаимосвязанная природа этих двух свойств вытекает из значимости порядка, в котором проводятся измерения. Акты измерения положения и импульса описываются математически двумя операциями, которые, будучи произведены в разных последовательностях, дают разные результаты. Эту идею можно проиллюстрировать при помощи все той же игральной кости. Предположим, кость лежит на столе так, что верхней оказывается грань с единицей, как показано на рисунке. Повернем кубик на четверть оборота вокруг вертикальной оси, проходящей через верхнюю грань, а затем – на четверть оборота вокруг горизонтальной оси, проходящей вокруг одной из боковых граней. Теперь на верхней грани оказалась пятерка. Но если вернуть кость в исходное положение и повторить те же движения, но в обратном порядке, результат получится иным. Теперь верхней оказывается грань с четверкой.

Любые измерения обладающие этим свойством что порядок в котором производят - фото 38

Любые измерения, обладающие этим свойством – что порядок, в котором производят соответствующие им математические операции, имеет значение, – порождают принцип неопределенности. Он попросту является математическим следствием свойства, называемого некоммутативностью.

Именно математика, лежащая в основе квантовой физики, в значительной степени ответственна за ее противоречие здравому смыслу. Когда я зарываюсь в книги и статьи по квантовой физике, мне кажется, что я вхожу в лабиринт. Перед началом путешествия мне казалось, что я знаю, где нахожусь. Затем я стал прокладывать свой логический маршрут через изгибы и повороты лабиринта, используя свои математические навыки. Мне приходится полагаться на математику, потому что стены лабиринта так высоки, что не позволяют мне даже догадываться о том, какой мир лежит за ними. Но когда математика выводит меня на другую сторону и я пытаюсь разобраться, куда я попал, окружающая меня местность выглядит совершенно непохожей на то место, с которого я начал свой путь.

С математикой-то все в порядке: трудность представляет интерпретация результатов, которые она выдает. Создается такое впечатление, что у меня нет языка, который позволил бы перевести то, что эта математика сообщает нам о реальности. Может быть, мои затруднения не реальны, а порождены ограничениями, которые накладывают старый язык и старые теории. Квантовая физика – это кроличья нора, и, упав в нее, мы должны кардинально изменить свою точку зрения и сформулировать новый язык, который позволил бы нам уверенно путешествовать по этому зазеркальному миру. И, нравится нам это или нет, этот язык – математика.

Но можно ли доверять математике? Выведенное из теории поведение, предсказанное математикой принципа неопределенности Гейзенберга, было подтверждено экспериментально. Американский физик Клиффорд Шалл описывает в статье, опубликованной в 1969 г., результаты обстрела нейтронами щели с уменьшающейся шириной. Как и предсказывала теория, увеличение точности определения положения нейтронов, обеспечиваемое уменьшением ширины щели, приводило к росту разброса возможных значений их импульса. И, когда нейтроны долетали до пластины детектора, наблюдалось распределение, стандартное отклонение которого точно соответствовало предсказаниям уравнения принципа неопределенности Гейзенберга.

Простой акт более точного определения положения нейтрона привел к потенциальному изменению его импульса. Принцип неопределенности Гейзенберга выражает в виде уравнения тот факт, что мы никогда не сможем знать всего. Увеличение знания неизбежно достается нам ценой соответствующего увеличения незнания.

Получая более точную информацию об одних величинах, мы теряем определенность других. Но такая неопределенность может иметь неожиданные последствия. Если заключить электрон внутри очень маленькой коробочки, положение такого электрона будет известно с высокой точностью. Но в результате этого значения его импульсы будут распределены в чрезвычайно широком диапазоне. При попытке измерения импульса происходит редукция волновой функции, в результате которой импульс может получить одно из множества разных значений.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Маркус дю Сотой читать все книги автора по порядку

Маркус дю Сотой - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




О том, чего мы не можем знать. Путешествие к рубежам знаний отзывы


Отзывы читателей о книге О том, чего мы не можем знать. Путешествие к рубежам знаний, автор: Маркус дю Сотой. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x