Макс Тегмарк - Наша математическая вселенная. В поисках фундаментальной природы реальности

Тут можно читать онлайн Макс Тегмарк - Наша математическая вселенная. В поисках фундаментальной природы реальности - бесплатно полную версию книги (целиком) без сокращений. Жанр: foreign_edu, издательство Литагент Corpus, год 2017. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Наша математическая вселенная. В поисках фундаментальной природы реальности
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Corpus
  • Год:
    2017
  • Город:
    Москва
  • ISBN:
    978-5-17-085475-2
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Макс Тегмарк - Наша математическая вселенная. В поисках фундаментальной природы реальности краткое содержание

Наша математическая вселенная. В поисках фундаментальной природы реальности - описание и краткое содержание, автор Макс Тегмарк, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Галилео Галилей заметил, что Вселенная – это книга, написанная на языке математики. Макс Тегмарк полагает, что наш физический мир в некотором смысле и есть математика. Известный космолог, профессор Массачусетского технологического института приглашает читателей присоединиться к поискам фундаментальной природы реальности и ведет за собой через бесконечное пространство и время – от микрокосма субатомных частиц к макрокосму Вселенной.

Наша математическая вселенная. В поисках фундаментальной природы реальности - читать онлайн бесплатно полную версию (весь текст целиком)

Наша математическая вселенная. В поисках фундаментальной природы реальности - читать книгу онлайн бесплатно, автор Макс Тегмарк
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Наконец, описание двух крайних справа паттернов на рис. 12.7 требует по 9 битов. Мы знаем, что правый нижний паттерн спрятан среди 16 384 цифр √2, но для такого маленького паттерна это знание уже неинтересно и бесполезно: существует лишь 2 9= 512 возможных паттернов длиной 9, так что данный узор прячется в большинстве случайно выглядящих строк из тысячи 0 и 1.

На рис. 12.8 изображена красивая математическая структура, известная как множество (фрактал) Мандельброта. Она обладает тем замечательным свойством, что сложные паттерны существуют в ней на сколь угодно малых масштабах, и хотя многие из них кажутся похожими, повторяющихся среди них нет. Насколько сложны два приведенных изображения? Каждое содержит около 1 млн пикселов, которые, в свою очередь, представляются 3 байтами информации [86](байт равен 8 битам), а значит, для описания каждого изображения требуется несколько мегабайт. Однако левое изображение можно вычислить с помощью программы длиной всего в несколько сотен байтов, многократно выполняющей простое вычисление z 2+ c .

Правое изображение тоже простое, поскольку является крошечной частью левого. При этом оно немного сложнее: чтобы указать 20-значный номер одной из 10 20частей, дополнительно требуется 8 байтов информации. Так что вновь меньшее становится большим в том смысле, что видимое информационное содержание увеличивается, когда мы ограничиваем свое внимание малой частью целого, теряя симметрию и простоту, характерные для совокупности частей. А вот еще более простой пример: алгоритмическое информационное содержание произвольного числа, записываемого триллионом цифр, существенно, поскольку кратчайшая программа, печатающая это число, не может быть чем-то гораздо лучшим, чем просто записью всего триллиона цифр. Однако список всех чисел 1, 2, 3, … может быть сгенерирован совершенно тривиальной компьютерной программой, так что сложность множества меньше сложности типичного его члена.

Рис 128Несмотря на миллионы искусно раскрашенных пикселов множество - фото 107

Рис. 12.8.Несмотря на миллионы искусно раскрашенных пикселов, множество Мандельброта ( слева ) имеет очень простое описание: точки на рисунке соответствуют тому, что математики обозначают комплексным числом c , а цвет указывает, насколько быстро комплексное число z устремляется к бесконечности, если начать с z = 0 и продолжать вводить его в квадрат, прибавляя c , то есть повторно применяя преобразование z = z 2 + c . Парадоксально, но описание правого изображения требует больше информации, несмотря на то, что оно лишь малая часть левого: если разрезать множество Мандельброта примерно на сто триллионов триллионов частей, оно само окажется одной из них, а информация, содержащаяся на правом изображении, по сути, соответствует ее адресу внутри большого изображения, поскольку самый экономичный способ описать ее – сказать нечто вроде: «31415926535897932384-й фрагмент множества Мандельброта».

Теперь вернемся к нашей физической Вселенной и почти гуголу битов, которые, по-видимому, требуются для ее описания. Стивен Вольфрам, Юрген Шмидхубер и некоторые другие ученые задумались, не является ли по большей части эта сложность иллюзией, подобно сложности множества Мандельброта или левого нижнего паттерна на рис. 12.7, то есть возникающей благодаря еще не открытому, но очень простому математическому правилу. Хотя эта идея кажется мне элегантной, я с ней не согласен: по-моему, маловероятно, чтобы все числа, характеризующие нашу Вселенную, от паттернов на картах космического микроволнового фона, полученных WMAP , до положения песчинок на пляже, могли сводиться к почти полному ничто за счет простого алгоритма сжатия данных. На самом деле, как мы видели в гл. 5, космологическая инфляция явно предсказывает, что первичные космические флуктуации, из которых появилась значительная доля этой информации, распределены как случайные числа, для которых существенное сжатие данных невозможно.

Эти первичные флуктуации задают все, чем ранняя Вселенная отличалась от легко описываемой идеально однородной плазмы. Почему паттерн первичных космических флуктуаций кажется случайным? В гл. 5 мы видели, что, согласно космологической стандартной модели, инфляция порождает все возможные паттерны в различных областях космоса (в различных вселенных мультиверса I уровня). И, поскольку мы сами находимся во вполне типичной части этого мультиверса, открывающийся нам паттерн будет казаться случайным без каких-либо скрытых закономерностей, которые помогли бы сжать содержащуюся в нем информацию. Эта ситуация очень похожа на нижний ряд на рис. 12.7, где наша Вселенная (соотносимая с правым изображением) соответствует небольшой, кажущейся случайной части мультиверса I уровня (соотносимого с левым изображением), который имеет простое описание. Если вы вернетесь к гл. 6, то увидите, что рис. 6.2 становится эквивалентен нижнему ряду на рис. 12.7 (если дополнить последний так, чтобы на нем умещался гуголплекс двоичных цифр числа √2, а правый рисунок содержал около гугола битов, как наша Вселенная). Хотя это еще не доказано, среди математиков широко признано, что цифры числа √2 ведут себя как случайные числа, поэтому рано или поздно появляется любая возможная последовательность (так же, как где-то в мультиверсе I уровня появляются вселенные со всеми возможными начальными условиями). Это означает, что последовательность из гугола цифр числа √2 ничего не говорит нам о числе √2, а указывает лишь, какое место в последовательности его цифр мы видим. Аналогичным образом, наблюдение гугола битов информации о кажущемся случайным фоне первичных космических флуктуаций, порожденном инфляцией, дает нам информацию лишь о том, где в огромном постинфляционном пространстве мы ведем наблюдение.

Реинтерпретация начальных условий

Выше выражалось беспокойство относительно начальных условий. Теперь у нас есть радикальный ответ: эта информация относится не к нашей фундаментальной физической реальности, а к нашему месту в ней . Огромная наблюдаемая нами сложность иллюзорна в том смысле, что реальность очень проста в описании, а гугол битов требуется просто для того, чтобы указать наш адрес в мультиверсе. Поскольку в нашей Галактике много планетных систем с различным числом планет ( гл. 6 ), то когда мы говорим, что в Солнечной системе их восемь, в этом нет фундаментальной информации о нашей Галактике, а есть лишь некоторые сведения о нашем галактическом адресе. Поскольку мультиверс I уровня содержит другие Земли, на небе которых видны все возможные вариации рисунка космического микроволнового фона, информация, содержащаяся на картах WMAP или на фотографии ковша Большой Медведицы, сходным образом говорит о нашем мультиверсном адресе. Аналогично 32 физические константы из гл. 10 указывают наше место в мультиверсе II уровня (если он существует). Хотя мы думали, что вся эта информация относится к нашей физической реальности, она на самом деле относится к нам. Сложность – это иллюзия, она существует лишь в голове наблюдателя.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Макс Тегмарк читать все книги автора по порядку

Макс Тегмарк - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Наша математическая вселенная. В поисках фундаментальной природы реальности отзывы


Отзывы читателей о книге Наша математическая вселенная. В поисках фундаментальной природы реальности, автор: Макс Тегмарк. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x