Джереми Тейлор - Здоровье по Дарвину: Почему мы болеем и как это связано с эволюцией
- Название:Здоровье по Дарвину: Почему мы болеем и как это связано с эволюцией
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2016
- Город:Москва
- ISBN:978-5-9614-4368-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Джереми Тейлор - Здоровье по Дарвину: Почему мы болеем и как это связано с эволюцией краткое содержание
Вы также узнаете, что такое эволюционная медицина и как с ее помощью можно по-новому лечить слепоту, болезни сердца и репродуктивной системы, аутоиммунные заболевания и болезнь Альцгеймера.
Здоровье по Дарвину: Почему мы болеем и как это связано с эволюцией - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Наша история сосуществования с раком насчитывает более миллиарда лет, с момента появления первых многоклеточных животных. До этого все формы жизни были одноклеточными, и каждая клетка могла свободно размножаться, как ей заблагорассудится. Но в многоклеточном организме клетки были вынуждены научиться жить и функционировать вместе, как единое целое. В результате они больше не могли делиться до бесконечности, и клеточное деление было строго ограничено стволовыми клетками и непосредственно образованными из них клетками-предшественниками, которые имеют меньше возможностей для размножения и дифференциации. Кроме того, у этих клеток-предшественников ограниченный срок жизни, и тем самым возникающие в них онкогенные мутации имеют гораздо меньшую вероятность распространиться в клонах раковых клеток и, как правило, исчезают вместе со смертью клетки-носителя. После того как клетки-предшественники полностью дифференцируются, например в клетки мышц, кожи или печени, они вообще теряют свое бессмертие. Таким образом, бессмертием обладает лишь ограниченное число стволовых клеток, которые необходимы для эмбрионального развития, постоянного обновления красных кровяных клеток и клеток иммунной системы и регенерации тканей и органов, поврежденных вследствие износа или старения. Из этого следует, что для того, чтобы развился рак, мутации должны затронуть либо стволовые клетки, как это происходит при лейкемии, либо дифференцированные или полудифференцированные клетки, которые под влиянием этих специфических мутаций возвращаются в незрелое состояние и возобновляют цикл клеточного деления.
Новая эра сотрудничества и согласованности потребовала от эволюции создания новых генов и химических сигнальных путей внутри клеток и между ними, чтобы обеспечить применение новых правил и строгий контроль за их соблюдением. Были созданы дополнительные механизмы репарации ДНК, призванные вовремя выявлять и нейтрализовывать онкогенные мутации. Отныне, если повреждение ДНК превышало определенный порог, эти новые гены инициировали гибель клетки – поэтому современные ученые и назвали их генами-супрессорами опухолей. Затем появились и другие гены-супрессоры, которые стали предотвращать деление поврежденных клеток путем блокирования митоза – процесса размножения клеток с репликацией их ДНК. Эти гены получили название генов контрольных точек клеточного цикла. Кроме того, позвоночные животные развили сложные адаптивные иммунные системы, способные не только производить специфические лимфоциты для противодействия конкретным антигенам, представленным на поверхности разнообразных бактерий и вирусов, но и атаковать клетки, угрожающие превратиться в раковые.
Исследователи Матиас Касас-Сельвес и Джеймс Дегрегори из Колорадского университета считают, что сама эволюция животных – их тканей, органов и систем – регулируется необходимостью избегать рака, что и объясняет развитие таких мощных механизмов борьбы с опухолевым ростом. Животным организмам нужно ограничить рост клеток-изгоев, которые отказываются подчиняться правилам мирного многоклеточного сосуществования, и создать ряд надежных барьеров на всем пути к развитию рака. В 2000 году американские исследователи рака Дуглас Ханахен и Роберт Вайнберг составили перечень из шести ключевых признаков раковых клеток, но эти признаки также можно рассматривать как шесть барьеров, которые нужно преодолеть клеткам на пути к превращению в злокачественные.
Во-первых, объясняют исследователи, раковым клеткам нужно стать самодостаточными с точки зрения сигналов роста. В норме клетки получают такие сигналы извне – факторы роста прикрепляются к рецепторам на клеточной мембране и через них проникают внутрь клеток. Эти факторы роста пробуждают находящуюся в состоянии покоя клетку и заставляют ее начать деление. Раковые клетки способны производить свои собственные факторы роста, которые имитируют сигналы извне. Два типичных примера – тромбоцитарный фактор роста (PDGF) и трансформирующий фактор роста альфа (TGF-α). Кроме того, они могут увеличивать активность рецепторов факторов роста на своих мембранах посредством значительного увеличения количества копий гена любого из этих рецепторов. В результате раковая клетка приобретает повышенную чувствительность к окружающим уровням факторов роста, которые при нормальных условиях могут не запускать деление клеток. Два классических примера – рецептор эпидермального фактора роста (EGFR), очень распространенный при раке мозга, и рецептор эпидермального фактора роста человека 2-го типа (HER2), характерный для рака молочной железы. Также раковые клетки могут производить мутировавшие формы белков RAS (так называемых белков «саркомы крысы»), которые застревают в положении «включено» и стимулируют деление клеток. Во-вторых, потенциальные раковые клетки должны стать глухими к сигналам о прекращении роста. Классическим примером является развитие нечувствительности к трансформирующему фактору роста бета (TGF-β), как это происходит при остром детском лейкозе.
В-третьих, раковые клетки должны стать трудно уничтожимыми. В норме, когда возникают мутации или обнаруживается повреждение хромосом, в действие вступают механизмы восстановления клетки. Если повреждение слишком велико, в клетке запускается процесс запрограммированной клеточной гибели, или апоптоза. Ключевую роль здесь играет ген-супрессор опухолевого роста р53, который отвечает за ремонт ДНК и при обнаружении серьезных повреждений запускает механизм апоптоза. Раковые клетки должны отключить такие гены, как р53, или же они будут уничтожены в течение получаса: их клеточная мембрана и внутренняя структура будут разрушены, ядро распадется на мелкие части, а хромосомы дефрагментируются так, что их дальнейшее использование будет невозможно. Макрофаги и близлежащие клетки поглотят их останки, так что уже через двадцать четыре часа от клетки не останется и следа.
Для того чтобы раковые клетки дали начало колонии, которую мы называем опухолью и которая может содержать свыше 1 триллиона клеток, они должны стать бессмертными благодаря безграничной способности делиться и удваивать свою численность. Некоторые нормальные дифференцированные клетки в организме, например клетки сердца, вообще не могут делиться, но многие типы клеток, такие как фибробласты кожи, сохраняют способность к ограниченному делению, и в клеточной культуре их можно побудить пройти несколько циклов деления, пока не наступит старение и клетка не перейдет в кризисное состояние с таким хромосомным беспорядком, после которого она уже не может восстановиться. Раковые клетки должны задействовать механизм, который позволяет им избежать этой участи и достичь истинного бессмертия. В нормальных клетках на концах хромосом имеются специальные повторяющиеся последовательности ДНК, называемые теломерами. Эти теломерные «наконечники» защищают основную часть ДНК от повреждений. При каждом последующем раунде клеточного деления теломеры постепенно укорачиваются, что в конечном итоге приводит к фатальной деградации хромосом, и клетка погибает. Раковые клетки увеличивают активность фермента теломеразы, выработка которого в нормальных клетках в значительной степени подавляется. Благодаря этому теломеры в раковых клетках восстанавливаются так же быстро, как укорачиваются, что наделяет клетки почти неограниченной способностью к репликации.
Читать дальшеИнтервал:
Закладка: