Марио Ливио - Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса
- Название:Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса
- Автор:
- Жанр:
- Издательство:Литагент АСТ
- Год:2016
- Город:М.
- ISBN:978-5-17-095136-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Марио Ливио - Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса краткое содержание
Блестящий физик и остроумный писатель Марио Ливио рассказывает о математических идеях от Пифагора до наших дней и показывает, как абстрактные формулы и умозаключения помогли нам описать Вселенную и ее законы.
Книга адресована всем любознательным читателям независимо от возраста и образования.
Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
– Ну что, Гёдель, вы как следует подготовились к экзамену?
Разумеется, от этого замечания Гёдель страшно разволновался – Эйнштейн именно этого и добивался и теперь с большим интересом наблюдал за тревогой у Гёделя на лице. Когда мы прибыли в Трентон, нас проводили в большой зал, и хотя обычно свидетелей опрашивают отдельно от кандидата, на сей раз из-за присутствия Эйнштейна было сделано исключение, и нас пригласили сесть вместе – Гёдель посередине. Экзаменатор спросил, считаем ли мы, что из Гёделя получится достойный гражданин, сначала у Эйнштейна, затем у меня. Мы заверили его, что так, безусловно, и есть, что Гёдель человек выдающийся и так далее. Тогда он повернулся к Гёделю и спросил.
– Итак, мистер Гёдель, откуда вы?
Гёдель:Откуда я? Из Австрии.
Экзаменатор:Какое правительство было у вас в Австрии?
Гёдель:Республика, но конституция ее была такова, что в конце концов она превратилась в диктатуру.
Экзаменатор:О! Какой кошмар! В нашей стране такого быть не может.
Гёдель:Нет, может, и я вам это докажу .
То есть изо всех возможных вопросов экзаменатор задал именно тот, который задавать не стоило. Мы с Эйнштейном от этого диалога пришли в ужас, однако у экзаменатора хватило ума быстро успокоить Гёделя словами: «Боже мой, давайте не будем в это углубляться», – и на этом экзамен закончился к величайшему нашему облегчению. Наконец мы вышли и, когда мы направлялись к лифту, к нам подбежал человек с листом бумаги и ручкой, подскочил к Эйнштейну и попросил у него автограф. Эйнштейн покорно расписался. Когда мы спускались в лифте, я повернулся к Эйнштейну и сказал.
– Наверное, очень тяжело, когда вам постоянно так досаждают.
Эйнштейн ответил.
– Между прочим, это просто пережитки каннибализма.
Я растерялся и спросил.
– Как так?
Он сказал.
– Просто раньше требовали твоей крови, а теперь – твоих чернил.
Потом мы вышли, поехали обратно в Принстон, и, когда мы оказались на углу Мерсер-стрит, я спросил Эйнштейна, куда он хочет – в Институт или домой. Он ответил.
– Отвезите меня домой, все равно теперь уже не поработаешь.
А потом процитировал американскую политическую песню (к сожалению, слов я не помню, но, возможно, они сохранились у меня где-то в заметках, и я, конечно, узнаю их, если кто-нибудь подскажет). Тогда мы покатили обратно к дому Эйнштейна, и тогда он снова повернулся к Гёделю и сказал.
– Ну, Гёдель, это был ваш предпоследний экзамен.
Гёдель:Господи, неужели будет еще один?
Он тут же снова перепугался.
И тогда Эйнштейн сказал.
– Гёдель, последний экзамен ждет вас, когда вы сойдете в могилу!
Гёдель:Но в могилу же сами не сходят, Эйнштейн!
На что Эйнштейн ответил.
– Гёдель, это была просто шутка! – и с этими словами ушел.
Я отвез Гёделя домой. Все были очень рады, что это страшное испытание наконец позади, а голова у Гёделя снова стала свободной для занятий проблемами логики и философии.
В дальнейшем у Гёделя постоянно случались периоды серьезного душевного расстройства, и в конце концов он отказался принимать пищу. Умер Гёдель 14 января 1978 года от слабости и истощения.
Вопреки распространенному заблуждению, теоремы о неполноте Гёделя не предполагают, что некоторые истины так и останутся навеки непознанными. Кроме того, из этих теорем не следует, что человеческие способности к познанию так или иначе ограниченны. Нет, теоремы всего лишь показывают слабости и недостатки формальных систем. Поэтому, вероятно, для вас будет неожиданностью узнать, что несмотря на широчайшее влияние теорем на философию математики, их воздействие на эффективность математики как механизма построения теорий свелось к минимуму. Более того, именно в десятилетия непосредственно до и после публикации доказательства Гёделя математика добилась самых выдающихся успехов в создании физических теорий Вселенной. Ее вовсе не отмели за ненадежность – напротив, математика и ее логические выводы оказывалась все более необходимой для понимания устройства мироздания.
Однако это означало, что загадка «необъяснимой эффективности» математики стала еще заковыристее. Задумайтесь об этом. Представьте себе, что было бы, если бы логицисты одержали полную победу. Это означало бы, что математика целиком выросла из логики, буквально из законов мышления. Но как такая дедуктивная наука могла бы столь чудесно объяснять природные явления? Какова связь формальной логики (вероятно, стоит даже сказать «человеческой формальной логики») и космоса? После Гильберта и Гёделя ответ на этот вопрос яснее не стал. Осталась лишь неполная формальная «игра», описанная языком математики [143] Очевидно, что это колоссальное упрощенчество, дозволительное лишь в популярной книге. На самом же деле серьезные попытки оправдать логицизм продолжаются по сей день. Обычно они предполагают, что многие математические истины познаваемы априорно. См., например, Wright 1997 и Tennant 1997.
. Каким образом модели, построенные на такой «ненадежной» системе, порождают глубочайшие открытия, касающиеся Вселенной и ее механизмов? Прежде чем подступиться к этим вопросам, мне придется их немного заострить, изучив несколько частных случаев, показывающих, сколь тонкая это материя – эффективность математики.
Глава 8
Непостижимая эффективность?
В главе 1 я отмечал, что успех математики в создании физических теорий имеет две стороны – одну я назвал «активной», другую «пассивной». Активная сторона отражает то, что ученые формулируют законы природы в сугубо прикладных математических терминах. То есть они используют математические понятия, соотношения и равенства, иногда – разработанные с прицелом на дальнейшее практическое применение, а иногда – придуманные непосредственно ради конкретной задачи. В таких случаях исследователи обычно полагаются на то, что им представляется, что между свойствами математических понятий и наблюдаемыми феноменами или результатами экспериментов есть определенное сходство. В таких случаях эффективность математики не вызывает особого изумления, поскольку вполне можно сказать, что теории нарочно подогнаны под наблюдения. Однако у активной стороны есть одно удивительное качество – это точность, о которой я еще расскажу в этой главе. «Пассивная» эффективность относится к тем случаям, когда разрабатываются совершенно абстрактные математические теории, безо всякого намерения найти им прикладное применение, однако впоследствии эти теории вдруг превращаются в физические модели с мощными прогностическими способностями.
Ярким примером сочетания активной и пассивной эффективности математики служит теория узлов .
Читать дальшеИнтервал:
Закладка: