Сет Ллойд - Программируя Вселенную. Квантовый компьютер и будущее науки

Тут можно читать онлайн Сет Ллойд - Программируя Вселенную. Квантовый компьютер и будущее науки - бесплатно полную версию книги (целиком) без сокращений. Жанр: foreign_edu, издательство Array Литагент «Альпина», год 2014. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Программируя Вселенную. Квантовый компьютер и будущее науки
  • Автор:
  • Жанр:
  • Издательство:
    Array Литагент «Альпина»
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-91671-270-4, 978-5-91671-324-4
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Сет Ллойд - Программируя Вселенную. Квантовый компьютер и будущее науки краткое содержание

Программируя Вселенную. Квантовый компьютер и будущее науки - описание и краткое содержание, автор Сет Ллойд, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Каждый атом Вселенной, а не только различные макроскопические объекты, способен хранить информацию. Акты взаимодействия атомов можно описать как элементарные логические операции, в которых меняют свои значения квантовые биты – элементарные единицы квантовой информации. Парадоксальный, но многообещающий подход Сета Ллойда позволяет элегантно решить вопрос о постоянном усложнении Вселенной: ведь даже случайная и очень короткая программа в ходе своего исполнения на компьютере может дать крайне интересные результаты. Вселенная постоянно обрабатывает информацию – будучи квантовым компьютером огромного размера, она все время вычисляет собственное будущее. И даже такие фундаментальные события, как рождение жизни, половое размножение, появление разума, можно и должно рассматривать как последовательные революции в обработке информации.

Программируя Вселенную. Квантовый компьютер и будущее науки - читать онлайн бесплатно полную версию (весь текст целиком)

Программируя Вселенную. Квантовый компьютер и будущее науки - читать книгу онлайн бесплатно, автор Сет Ллойд
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Из предыдущей главы мы помним, что это число колебаний пропорционально тому, что в физике называют действием физической системы. Действие – это число колебаний, умноженное на постоянную Планка. Действие, деленное на постоянную Планка, – хороший физический аналог числа элементарных операций, то есть вычислительной сложности. Чтобы оценить, как сложно было создать данную физическую систему, достаточно рассмотреть действие, которое потребовалось для ее создания. («Действие находится там, где происходит действие».)

Выводы предыдущей главы позволяют нам оценить логическую и термодинамическую глубину Вселенной в целом, а значит, найти верхнюю границу глубины всего, что она содержит. Общая сумма вычислительных усилий, потребовавшихся для создания Вселенной, составляет 10122 операций (логическая глубина), выполненных с 1092 битами (термодинамическая глубина).

Эффективная сложность

Логическая и термодинамическая глубина – не единственные меры, позволяющие оценить численно те или иные аспекты сложности. В зависимости от того, какую черту сложной системы мы хотим описать, есть и другие меры, которые не менее или даже более полезны. Одна из них – величина, получившая название «эффективная сложность». Она измеряет степень регулярности системы; это определение сложности первоначально предложил Мюррей Гелл-Манн. В последние десять лет мы с Гелл-Манном пытаемся найти математически точное выражение для идеи эффективной сложности.

Эффективная сложность – простая и изящная мера сложности. С каждой физической системой связано определенное количество информации – количество, необходимое для описания физического состояния системы с той точностью, которую допускает квантовая механика. Основной способ измерить эффективную сложность чего-либо – разделить это количество информации на две части: информация, которая описывает регулярные аспекты данного объекта, и информация, которая описывает его случайные аспекты. Количество информации, необходимой для описания регулярности системы, и будет ее эффективной сложностью.

В технической системе – пусть это будет самолет – эффективная сложность по сути равна объему чертежей системы: это количество информации, необходимой для ее сборки. Например, чертежи самолета определяют форму его крыла, а также химический состав и процедуру производства сплава, из которого оно сделано. Форма крыла и состав сплава – это аспекты регулярности проекта; биты, которые определяют эти черты, должны иметь определенные значения, иначе самолет просто не взлетит. Эти биты включаются в эффективную сложность самолета. Но чертежи не определяют положения каждого атома крыльев. Биты, определяющие, где находится каждый атом в тот или иной момент времени, являются случайными; они не влияют на летные характеристики самолета и не являются индикатором его сложности.

Как показывает пример с самолетом, сложность – ключевой вопрос в инженерном деле. Как удается проектировать сложные системы, обладающие стабильным поведением? Принцип, который мы преподаем студентам инженерного факультета в Массачусетском технологическом институте, выражен известной аббревиатурой KISS: Keep It Simple, Stupid! (то есть чем проще – тем лучше). Но что, если система, которую вы проектируете, сама по себе сложна, например если это самолет? В Массачусетском технологическом институте есть кафедра проектирования систем, где инженеры, представители естественных и социальных наук вместе находят и решают проблемы сложных технических систем.

Один многообещающий метод проектирования сложных систем называют аксиоматическим проектированием. Этот подход предложил Нам Сух, бывший глава кафедры машиностроения Массачусетского технологического института. Идея аксиоматического проектирования состоит в том, чтобы свести к минимуму информационное содержание проектируемой технической системы, сохранив ее способность выполнять функциональные требования. При правильном применении аксиоматическое проектирование позволяет создавать самолеты, компьютерные программы и тостеры, достаточно сложные (но не более) для того, чтобы выполнять их проектные функции. Аксиоматическое проектирование сводит к минимуму эффективную сложность проектируемой системы, при этом сохраняя ее функциональность. В общем, чем проще – тем лучше, но не нужно слишком упрощать.

Определение эффективной сложности физической системы, очевидно, требует суждения о том, что можно считать регулярностью, а что нет. Иначе говоря, нужно задать критерии того, какие биты можно считать «важными» и ответственными за регулярность, а какие – «неважными», то есть битами случайности.

В технической системе важные биты – те, которые должны иметь определенные значения, иначе система не сможет делать то, что она должна делать. В эволюционирующих системах, таких как бактерии, менее очевидно, какие биты важны, а какие – нет. Здесь простой критерий, позволяющий выяснить, важен ли бит и вносит ли он свой вклад в эффективную сложность, может быть таков: изменить значение бита и посмотреть, что будет. Если инверсия бита даст заметный эффект, то он важен, а если не даст заметного эффекта, то он не важен. Если бит влияет на способность бактерии выживать и размножаться, то этот бит увеличивает эффективную сложность бактерии. Важные биты бактерии – те, которые существенно влияют на ее будущее.

Точно так же можно измерить эффективную сложность любой системы, способной к целенаправленному поведению. Любой бит, влияющий на способность системы достигать ее целей, увеличивает эффективную сложность этой системы.

Конечно, определение целенаправленного поведения до некоторой степени субъективно. Но предположим, что мы сосредоточимся на поведении, позволяющем системе, во-первых, получать энергию и, во-вторых, использовать эту энергию для создания копий самой себя. Живые системы посвящают большую часть своего времени питанию и воспроизведению. Какое определение жизни ни взять, любая система, способная выполнять два этих действия, прошла большой путь к тому, чтобы считаться живой. Как только мы признали целенаправленным поведение, увеличивающее способность системы получить энергию и использовать ее для воспроизводства, у нас появляется возможность измерить эффективную сложность всех живых систем и всех систем, которые когда-нибудь смогут стать живыми. Как мы увидим, системы, обладающие эффективной сложностью, которые получают энергию и воспроизводят себя, естественным образом возникают из лежащих в основе вычислительных процессов Вселенной.

Почему Вселенная сложна?

Теперь, когда мы формально определили сложность, можно показать, что Вселенная с необходимостью ее создает. Законы физики универсальны в вычислительном отношении и потому позволяют Вселенной содержать и системы с логической глубиной, и системы с высокой эффективной сложностью. Но мы можем также показать, что Вселенная должна содержать такие сложные системы. Давайте вспомним в деталях первую революцию в сфере обработки информации – создание самой Вселенной.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Сет Ллойд читать все книги автора по порядку

Сет Ллойд - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Программируя Вселенную. Квантовый компьютер и будущее науки отзывы


Отзывы читателей о книге Программируя Вселенную. Квантовый компьютер и будущее науки, автор: Сет Ллойд. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x