Сет Ллойд - Программируя Вселенную. Квантовый компьютер и будущее науки

Тут можно читать онлайн Сет Ллойд - Программируя Вселенную. Квантовый компьютер и будущее науки - бесплатно полную версию книги (целиком) без сокращений. Жанр: foreign_edu, издательство Array Литагент «Альпина», год 2014. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Программируя Вселенную. Квантовый компьютер и будущее науки
  • Автор:
  • Жанр:
  • Издательство:
    Array Литагент «Альпина»
  • Год:
    2014
  • Город:
    Москва
  • ISBN:
    978-5-91671-270-4, 978-5-91671-324-4
  • Рейтинг:
    5/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 100
    • 1
    • 2
    • 3
    • 4
    • 5

Сет Ллойд - Программируя Вселенную. Квантовый компьютер и будущее науки краткое содержание

Программируя Вселенную. Квантовый компьютер и будущее науки - описание и краткое содержание, автор Сет Ллойд, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Каждый атом Вселенной, а не только различные макроскопические объекты, способен хранить информацию. Акты взаимодействия атомов можно описать как элементарные логические операции, в которых меняют свои значения квантовые биты – элементарные единицы квантовой информации. Парадоксальный, но многообещающий подход Сета Ллойда позволяет элегантно решить вопрос о постоянном усложнении Вселенной: ведь даже случайная и очень короткая программа в ходе своего исполнения на компьютере может дать крайне интересные результаты. Вселенная постоянно обрабатывает информацию – будучи квантовым компьютером огромного размера, она все время вычисляет собственное будущее. И даже такие фундаментальные события, как рождение жизни, половое размножение, появление разума, можно и должно рассматривать как последовательные революции в обработке информации.

Программируя Вселенную. Квантовый компьютер и будущее науки - читать онлайн бесплатно полную версию (весь текст целиком)

Программируя Вселенную. Квантовый компьютер и будущее науки - читать книгу онлайн бесплатно, автор Сет Ллойд
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Возникновение жизни

Биологи очень много знают о том, как устроены и работают живые системы. Как ни странно, о том, как возникла жизнь, им известно намного меньше, чем известно космологам о начале Вселенной. Дата Большого взрыва и его местоположение (везде) известно с более высокой степенью точности, чем дата и место рождения жизни, уже не говоря о процедурных деталях. Биологи знают лишь то, что жизнь впервые появилась на Земле почти 4 млрд лет назад. Возможно, она возникла здесь, а может быть, появилась еще где-то и была затем занесена на Землю.

Где бы ни возникла жизнь, вопрос в том, как именно она возникла? Ответ на этот вопрос – предмет горячих споров. Вот один возможный сценарий.

Мы видели, что законы физики позволяют выполнять вычисления в масштабе атомов, электронов, фотонов и других элементарных частиц. Благодаря такой вычислительной универсальности системы больших масштабов также универсальны в вычислительном отношении. Вы, я, и наши компьютеры способны выполнять одни и те же базовые вычисления. Вычисления также могут происходить в масштабе, чуть большем, чем масштаб атомов. Атомы могут соединяться, формируя молекулы. Химия – это наука, которая описывает, как атомы соединяются, перестраиваются и вновь разъединяются. Простые химические системы также способны выполнять вычисления.

Как же вычисляет химия? Представьте себе емкость, например небольшую пору в камне, заполненную различными химическими соединениями. В начале химического вычисления некоторые из этих веществ имеют высокую концентрацию. Эти вещества можно воспринимать как биты со значением 1. У других веществ – низкая концентрация: их значение – 0. Где именно проходит граница между высокой и низкой концентрацией, в данном случае неважно.

Все эти химические вещества вступают в реакции друг с другом. Некоторые начинают с высокой концентрации и истощаются; биты, соответствующие этим веществам, меняют значение от 1 к 0. Концентрация других веществ увеличивается; их биты изменяются от 0 к 1. В ходе химических реакций одни биты инвертируются, а другие – нет.

Звучит многообещающе. В конце концов, вычисление – это просто биты, которые меняют значения систематическим образом. Чтобы показать, что химическая реакция может выполнять универсальные вычисления, нужно просто продемонстрировать, что она может выполнять операции «и», «не» и «копировать».

Давайте начнем с «копировать». Предположим, что химическое вещество A усиливает производство химического вещества B и если вокруг мало вещества A, уровень вещества B остается низким. Если концентрация A низкая и концентрация B низкая, то обе они останутся низкими. Если бит, соответствующий A, сначала имел значение 0, как и бит, соответствующий B, то эти биты останутся в значении 0. То есть 00 → 00. Аналогичным образом если сначала концентрация A высока, а концентрация B низка, то после химической реакции мы получим высокую концентрацию A и высокую концентрацию B. То есть если бит, соответствующий A, сначала находился в значении 1, а бит, соответствующий B, – в значении 0, то в конце оба бита будут находиться в значении 1. 10 → 11. Реакция выполнила операцию «копировать». Бит, соответствующий A, остался таким же, каким он был до реакции, а бит, соответствующий B, теперь стал копией бита, соответствующего A. Обратите внимание, что в этом процессе A оказывает влияние на то, будет ли произведено B, но само по себе это вещество не потребляется в ходе реакции; в химии A называют катализатором для производства B.

Таким же образом происходит операция «не». Предположим, что A не усиливает производство B, а препятствует ему. В этом случае реакция приведет к тому, что бит B будет противоположным биту A; то есть значение бита B окажется логическим «не» от значения бита А.

А как насчет «и»? Предположим, что концентрация вещества C переходит от низкой к высокой в том и только том случае, если вокруг присутствуют высокие концентрации A и B. Тогда реакция, которая начинается при низкой концентрации C (его бит – в значении 0), приведет к высокой концентрации C в том и только том случае, если и A, и B находятся в высокой концентрации (то есть в том и только том случае, если биты A и B оба находятся в значении 1). После реакции бит C будет представлять собой логическое «и» битов A и B.

Итак, химические реакции могут без труда выполнять операции «и», «не» и «копировать». Если добавить в наш набор новые вещества, такие логические операции объединятся и приведут к ряду реакций, соответствующих любой желаемой логической схеме. Таким образом, химические реакции универсальны в вычислительном отношении.

В целом, когда химические соединения в поре камня вступают в реакции, некоторые из них становятся катализаторами для начального набора реакций, а некоторые из продуктов этих начальных реакций становятся катализаторами для дальнейших реакций. Такой процесс называется «автокаталитическим набором реакций»: каждая реакция создает катализаторы для других реакций между веществами данного набора. Автокаталитические реакции – это очень мощные системы. Помимо вычислений, они могут давать на выходе большое разнообразие химических веществ. В некотором смысле автокаталитические реакции похожи на крошечную, управляемую компьютером фабрику по производству химических соединений. Некоторые из этих веществ являются составными элементами живых систем.

Возникла ли жизнь в процессе автокаталитических реакций? Возможно. Мы не узнаем этого до тех пор, пока не установим коммутационную схему и программу для автокаталитического набора, в котором впервые родились клетки и гены [45]. Вычислительная универсальность автокаталитических наборов позволяет утверждать, что некоторые такие программы существуют, но это не значит, что такая программа проста или ее легко найти.

И снова многомировая интерпретация

В книге «Ткань реальности» (The Fabric of Reality), написанной в 1997 г., физик Дэвид Дойч пылко защищает многомировую интерпретацию квантовой механики с точки зрения квантовых вычислений. Прежде чем завершить изложение, давайте кратко рассмотрим смысл, в котором могут существовать другие миры – такие, какими их видят Дойч и Борхес.

Вселенная, которую мы видим вокруг, соответствует только одной из ряда декогерентных историй; то, что мы видим, когда смотрим в окно, – лишь один элемент суперпозиции состояний, составляющих полное квантовое состояние Вселенной. Другие элементы этого состояния соответствуют «другим мирам», мирам, где кости в квантовой игре выпали по-другому. Набор всех возможных миров составляет Мультивселенную (или Мультиверс). Оставляю читателю решить, существуют ли эти другие миры в том же смысле, как наш. Так или иначе, существуют они или нет, но до тех пор, пока они декогерентны, эти миры не могут оказать никакого влияния на наш мир.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Сет Ллойд читать все книги автора по порядку

Сет Ллойд - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Программируя Вселенную. Квантовый компьютер и будущее науки отзывы


Отзывы читателей о книге Программируя Вселенную. Квантовый компьютер и будущее науки, автор: Сет Ллойд. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x