Гай Клакстон - Развитие интуиции. Как принимать верные решения без сомнений и стресса
- Название:Развитие интуиции. Как принимать верные решения без сомнений и стресса
- Автор:
- Жанр:
- Издательство:Манн Иванов Фербер
- Год:2015
- Город:Москва
- ISBN:978-5-00057-297-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Гай Клакстон - Развитие интуиции. Как принимать верные решения без сомнений и стресса краткое содержание
На русском языке публикуется впервые.
Развитие интуиции. Как принимать верные решения без сомнений и стресса - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
На самом деле операторы, которые обрабатывают данные эхолотов, временами могут довольно точно отличать камень от мины, однако, как участники экспериментов на познание путем впитывания, не могут четко выразить, что именно они знают. И все же человек не безупречен, а подобные ошибки могут стоить очень дорого. Чтобы научить искусственный интеллект отличать мины от камней, мы должны сделать так, чтобы он столкнулся с такой ситуацией на практике и накопил собственный опыт.
Нейронная сеть, включающая в себя только 22 разных нейрона, смогла на удивление верно показать, как осуществляется этот процесс. Нейроны расположены в три яруса (см. рис. 9). На первом ярусе находятся 13 чувствительных, или сенсорных, нейронов, соответствующих 13 диапазонам, на которые раскладывается звуковой спектр эхо-сигнала. Они настроены на определение мощности сигнала внутри определенного диапазона, а также излучают сигнал, пропорциональный их мощности, как настоящие нейроны передают потенциал действия. Все 13 нейронов посылают сигналы каждому из семи, находящихся на следующем ярусе, а каждый из них, в свою очередь, посылает отраженный сигнал каждому из двух нейронов с последнего яруса, обратный сигнал которых распознается как «мина» или «камень». Такая упрощенная модель мозга не способна построить больше связей, при этом она может четко продемонстрировать избирательную чувствительность каждого нейрона ко всем сигналам, которые он получает, именно так, как это происходит с настоящими нервными клетками.

Рис. 9.Простая нейронная сеть, помогающая отличить подводные камни от мин
Задача сети заключается в том, чтобы на основе опыта постепенно отрегулировать эту чувствительность так, чтобы поток возбуждения через связи гарантированно возбудил нейрон «камень», если там камень, и нейрон «мина», если есть мина. Ни программист, ни тем более компьютер изначально не знают, какая именно нужна чувствительность. Они даже не знают, существует ли такая чувствительность, которая нужна, чтобы справиться с задачей. Самое лучшее, что может сделать программист, – взять много разных настоящих эхо-сигналов, которые точно были получены от мины или камня, и один за другим запустить их в сеть. После того как сеть сформирует решение, программист должен определить, правильное оно или ошибочное. На этапе подготовки компьютеру задают несколько простых правил, с их помощью он может отрегулировать или подстроить чувствительность нейронов, основываясь на информации об успешности выполненной операции. Например, можно запрограммировать сеть таким образом, чтобы она определяла чувствительность после каждой попытки, исходя из того, был ли сигнал связан с правильным или ошибочным ответом. Величина поправки сигнала зависит от его отклонения в ту или иную сторону: правильные сигналы подстраиваются лишь немного, ошибочные – сильнее. Сначала «мозг» получает большое количество ответных реакций, после которых ему говорят – правильные это реакции или ошибочные. После этого его можно протестировать, используя новую серию сигналов, с которыми он никогда не встречался, и посмотреть на результат.
В этом примере сеть ведет себя точно так же, как участники экспериментов на познание путем впитывания. Простые нейронные сети отлично моделируют этот путь познания. Сеть начинает угадывать, делая при этом много ошибок, но постепенно начинает работать все лучше и лучше, пока, в конце концов, не научится точно различать камень и мину по эхо-сигналу, чего раньше ей не удавалось. Такая модель ясно показывает, что мозг делает то же, что делают люди: сначала он обнаруживает запутанные схемы, которые нельзя описать словами, и эти схемы включены в огромный спектр разных событий и ощущений, затем схемы используются для определения подходящего действия. Ни реальный человек, ни искусственный мозг не знают, что именно они делают и чем при этом руководствуются. Эти знания – весь наш опыт и мудрость – зависят от настроек, которые определяются взаимодействием нейронов мозга друг с другом. Эти настройки просто направляют поток возбуждения по разным каналам и по-разному их комбинируют. Все, что нужно нашему мозгу, – это пища: впечатления, обратная реакция и неосознанное широкое внимание к тому, что происходит вокруг. Все остальное мозг сделает сам.
Стоит отметить, что в модели определения разницы между минами и камнями искусственный мозг лучше справился с задачей и дал б о льшую точность, чем оператор гидролокатора на подводной лодке за всю свою долгую карьеру. Несмотря на простоту схемы, нейронная сеть превосходит человека не потому, что компьютер умнее, а в силу того, что за весь период эволюции у нас так и не развились настолько чувствительные уши, чтобы они могли разложить все эхо-сигналы на множество частотных диапазонов. Можно совершенно уверенно предположить, что если бы в задаче вместо сигналов слышался плачь младенца и нужно было определить, малыш хочет есть или у него болит живот, то матери дали бы компьютеру сто очков вперед. При этом есть шанс, что если научить дельфина определять разницу между камнями и минами, то он бы выиграл и у компьютера, и у оператора локатора.
Наше несовершенство лишний раз напоминает о том, что, безусловно, существуют пределы сложности задач, с которыми может справляться «расслабленный» мозг. В мире существует множество неуловимых сигналов и случайностей, которые не может вместить даже «четко отрегулированный» человеческий мозг, в особенности это касается ситуаций, которые в прошлом не были связаны с выживанием либо относятся к технологическим, фармацевтическим или социологическим моделям, которые наш биологический приемник не приспособлен улавливать. А также есть масса ситуаций, с которыми мы хотели бы справляться, но в них не содержится никакой информации или схем, которые можно взять на вооружение. При этом совершенно ясно, что основные технические характеристики бессознательного мозгового биокомпьютера позволяют обнаружить, запомнить и использовать информацию гораздо менее уловимую, чем та, о которой мы можем говорить или думать . Если мы не способны воспринять разум целиком, как нечто сознательное и размышляющее, и не придаем значения ценности или даже существованию неосознанных путей познания, нас это сделает глупее и беднее духовно.
Передача возбудительных сигналов от одного нейронного кластера к другому зависит от того, как наш мозг проложил каналы и настроил в данный момент чувствительность. По мнению нейробиолога из Оксфорда Сьюзан Гринфилд, как от брошенного в озеро камушка по воде начинают разбегаться круги, так и импульс в одной части мозга образует эпицентр, от которого возбуждение распространяется дальше, взаимодействует с другими потоками, активируя новые эпицентры. Можно увидеть, как это происходит на деле. Израильские ученые Рон Фростиг и Амирам Гринвальд вместе с другими коллегами провели исследование с использованием специальных красящих веществ, которые можно ввести в нейроны коры. Когда клетка становится активной и в ней появляется электрический заряд, вещество начинает светиться. Если вспышка света направлена на глаз животного, то можно видеть, как мгновенно формируется кластер, а через 10 миллисекунд он может удвоиться. Через 300 миллисекунд может образоваться очень большая группа активных клеток, которая будет занимать довольно широкую область мозга.
Читать дальшеИнтервал:
Закладка: