Скотт Ааронсон - Квантовые вычисления со времен Демокрита

Тут можно читать онлайн Скотт Ааронсон - Квантовые вычисления со времен Демокрита - бесплатно ознакомительный отрывок. Жанр: foreign_edu, издательство Литагент Альпина, год 2018. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Квантовые вычисления со времен Демокрита
  • Автор:
  • Жанр:
  • Издательство:
    Литагент Альпина
  • Год:
    2018
  • Город:
    Москва
  • ISBN:
    978-5-9614-5030-9
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Скотт Ааронсон - Квантовые вычисления со времен Демокрита краткое содержание

Квантовые вычисления со времен Демокрита - описание и краткое содержание, автор Скотт Ааронсон, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Написанная известным теоретиком в области квантовых вычислений Скоттом Ааронсоном, эта книга проведет вас через поразительное разнообразие тем, исследуя самые глубокие идеи математики, информатики и физики от теории множеств, вычислительной сложности, квантовых вычислений до интерпретации квантовой механики. Кроме того, вы познакомитесь с дискуссиями относительно путешествий во времени, парадокса Ньюкома, антропного принципа и взглядов британского физика и математика Роджера Пенроуза.
Неформальный стиль Ааронсона делает эту поразительную книгу доступной для читателей с научной подготовкой, а также для студентов и исследователей, работающих в области физики, информатики, математики и философии.

Квантовые вычисления со времен Демокрита - читать онлайн бесплатно ознакомительный отрывок

Квантовые вычисления со времен Демокрита - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Скотт Ааронсон
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

А что с нижними оценками сложности схемы (для специалистов по теоретической информатике это, по существу, кодовое слово, обозначающее «попытку доказать PNP», точно так же как для физиков «замкнутые времени подобные траектории» – кодовое слово для обозначения путешествий во времени)? Рад сообщить, что и здесь после 2006 г. имеются интересные подвижки – безусловно, более серьезные, чем можно было тогда ожидать. В качестве примера скажу, что Рахул Сантханам при помощи интерактивных методик доказательства получил нерелятивизирующий результат, согласно которому класс PromiseMAне имеет схем какого бы то ни было фиксированного полиномиального размера (см. главу 17). Результат Сантханама, в частности, побудил меня и Ави Вигдерсона в 2007 г. сформулировать теорему о барьере алгебраизации (см. там же) – обобщение теоремы о барьере релятивизации Бейкера, Гилла и Соловея, сформулированной еще в 1970-е гг. (см. так же главу 17). Алгебраизация объясняет, почему методики интерактивного доказательства в попытке доказать PNPпозволяют нам лишь дойти до определенного предела и не более того – к примеру, почему эти методики привели к сверхлинейной нижней оценке сложности схемы для класса PromiseMA,но не для класса NP, который всего лишь «чуть ниже его». Мы поставили задачу разработки новых методик поиска нижней оценки сложности схемы, которые позволяли бы убедительно обойти барьер алгебраизации. Эту задачу решил в 2010 г. Райан Уильямс своим прорывным доказательством того, что NEXPACC 0(речь об этом идет в главе 17).

Конечно, даже интереснейший результат Уильямса чертовски далек еще от доказательства PNP. Но в последние шесть лет наблюдается еще и растущий интерес – и, соответственно, прогресс – к программе создания геометрической теории сложности Кетана Мулмулея (см. главу 17); теория эта играет для доказательства PNPпочти в точности ту же роль, что теория струн в физике для цели создания Теории Всего. То есть, если говорить о конкретных результатах, программа геометрической теории сложности пока даже отдаленно не приблизилась к конечному результату, и даже самые рьяные ее сторонники предсказывают несколько десятилетий кропотливой работы, тогда как остальных просто отпугивает ее математическая сложность. В активе этой программы две вещи: во-первых, то, что она создает математические связи, «слишком глубокие и поразительные, чтобы их можно было считать простым совпадением», и во-вторых, то, что (хотя так считают далеко не все!) на безрыбье и рак рыба и что это единственный реальный претендент на успех, имеющий хоть какие-то шансы.

Позвольте мне упомянуть еще три открытия, сделанных после 2006 г. и важных для содержания этой книги.

В 2011 г. мы с Алексом Архиповым предложили «бозонную выборку» (см. главу 18) – рудиментарную, почти наверняка не универсальную модель квантовых вычислений с участием невзаимодействующих фотонов, которая совсем недавно была продемонстрирована в небольшом масштабе. Уверенность в том, что бозонную выборку трудно смоделировать на классическом компьютере, кажется, даже выше, чем в том, что трудно смоделировать (к примеру) алгоритм Шора разложения на множители.

В 2012 г. Умеш Вазирани и Томас Видик, опираясь на более ранние работы Пиронио с соавторами, показали, как можно использовать нарушения неравенства Белла для достижения экспоненциального расширения случайности (см. главу 19), то есть превращения n случайных бит в 2 n бит, которые гарантированно будут почти совершенно случайными, если только Природа не воспользуется сверхсветовой связью, чтобы их изменить.

Тем временем дебаты об «информационном парадоксе черной дыры» – то есть об очевидном конфликте между принципами квантовой механики и локальностью пространства-времени, когда биты и кубиты падают в черную дыру, – развивались с 2006 г. в новых направлениях. Самыми, возможно, важными достижениями здесь стали возросшая популярность и подробность модели черной дыры как «пушистого клубка», выдвинутой Самиром Матхуром, и спорное утверждение Алмхейри с соавторами о том, что наблюдатель, падающий в черную дыру, никогда даже не приблизится к сингулярности, а встретит на своем пути «огненную стену» и сгорит на горизонте событий. Я в меру своих сил расскажу об этих достижениях в главе 22.

Несколько дополнений и изменений в книге объясняются не какими-то новыми открытиями или аргументами, а просто тем, что я (ну надо же!) изменил мнение о чем-то. Один из примеров – мое отношение к аргументам Джона Сёрла и Роджера Пенроуза против «сильного искусственного интеллекта». Как вы увидите в главах 4 и 11, я по-прежнему считаю, что Сёрл и Пенроуз неправы в принципиальных моментах, причем Сёрл в большей степени, нежели Пенроуз. Но я, перечитав свой текст 2006 г., посвященный причинам, по которым они неправы, испытал неприятное чувство. Мне не понравился мой легкомысленный тон, моя готовность посмеяться над этими знаменитыми учеными, пытающимися завернуться в логический крендель в отчаянной и очевидно обреченной попытке обосновать человеческую уникальность. В результате я пребывал в ленивой уверенности, что все вокруг заранее согласны со мной: что для (по большей части) физиков и специалистов по информатике попросту самоочевидно, что человеческий мозг есть не что иное, как «горячая и влажная машина Тьюринга», – и считал, что глупо тратить лекционное время на такой давно решенный вопрос. С тех пор, кажется , я лучше проникся невероятной сложностью этих вопросов, и в частности необходимостью выдвигать такие аргументы, которые действовали бы на людей отличных от моей философских позиций.

С надеждой на то, что в 2020 г. эта книга будет так же сильно нуждаться в переработке, как нуждаются в ней сегодня, в 2013 г., конспекты лекций 2006 года,

Скотт Ааронсон, Кембридж (штат Массачусетс), январь 2013 г.

Благодарности

Мой практикант 2008 года Крис Гранад с энтузиазмом взялся за превращение разрозненных конспектов и аудиозаписей в полноценные черновики, которые я смог выложить у себя на сайте, – и это стало первым шагом на их долгом пути к превращению в книгу. После этого Алекс Архипов, мой замечательный докторант в MIT, прошелся по черновикам частой гребенкой и отметил места, которые были неверны, непонятны или не представляли более интереса. Я глубоко благодарен им обоим: эта книга одновременно и их книга, она бы не появилась без их помощи.

Она бы также не была возможна без Саймона Кейплина, моего издателя из Cambridge University Press (CUP), который предложил мне идею книги. Саймон понял, что мне нужно: он дергал меня раз в несколько месяцев, чтобы проверить, насколько я продвинулся, но никогда не давил на меня и всегда полагался на мое внутреннее чувство вины, чтобы увидеть конец в работе над проектом. (И в конце концов я его увидел .) Саймон также заверил меня в том, что хотя «Квантовые вычисления со времен Демокрита»… несколько отличны от обычных для издательства книг, он приложит все усилия для того, чтобы сохранить, как он выразился, ее «нетривиальное очарование». Я также благодарен другим сотрудникам CUP и компании Aptara Corp., которые помогли мне сделать книгу реальностью, – это Сара Хэмилтон, Эмма Уолкер и Диша Малхотра.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Скотт Ааронсон читать все книги автора по порядку

Скотт Ааронсон - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Квантовые вычисления со времен Демокрита отзывы


Отзывы читателей о книге Квантовые вычисления со времен Демокрита, автор: Скотт Ааронсон. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x