Иэн Стюарт - Величайшие математические задачи

Тут можно читать онлайн Иэн Стюарт - Величайшие математические задачи - бесплатно ознакомительный отрывок. Жанр: foreign_home, издательство Array Литагент «Альпина», год 2015. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Величайшие математические задачи
  • Автор:
  • Жанр:
  • Издательство:
    Array Литагент «Альпина»
  • Год:
    2015
  • Город:
    Москва
  • ISBN:
    978-5-9614-3705-8
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Иэн Стюарт - Величайшие математические задачи краткое содержание

Величайшие математические задачи - описание и краткое содержание, автор Иэн Стюарт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Закономерности простых чисел и теорема Ферма, гипотеза Пуанкаре и сферическая симметрия Кеплера, загадка числа π и орбитальный хаос в небесной механике. Многие из нас лишь краем уха слышали о таинственных и непостижимых загадках современной математики. Между тем, как ни парадоксально, фундаментальная цель этой науки – раскрывать внутреннюю простоту самых сложных вопросов. Английский математик и популяризатор науки, профессор Иэн Стюарт, помогает читателю преодолеть психологический барьер. Увлекательно и доступно он рассказывает о самых трудных задачах, над которыми бились и продолжают биться величайшие умы, об истоках таких проблем, о том, почему они так важны и какое место занимают в общем контексте математики и естественных наук. Эта книга – проводник в удивительный и загадочный мир чисел, теорем и гипотез, на передний край математической науки, которая новыми методами пытается разрешить задачи, поставленные перед ней тысячелетия назад.

Величайшие математические задачи - читать онлайн бесплатно ознакомительный отрывок

Величайшие математические задачи - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Иэн Стюарт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Наиболее эффективным детерминированным (т. е. дающим гарантированный результат) тестом на сегодняшний день является тест Адлемана – Померанса – Румели, названный в честь своих создателей – Леонарда Адлемана, Карла Померанса и Роберта Румели. В нем используются концепции теории чисел, куда более сложные, чем теорема Ферма, но примерно того же характера.

Я до сих пор помню письмо одного математика-любителя, предложившего вариант испытания делением. Давайте пробовать все возможные делители, предлагал этот энтузиаст, но начинать с корня квадратного из числа и двигаться, наоборот, вниз. Иногда этот метод действительно позволяет быстрее получить результат, чем при проверке делителей в обычном порядке, но с ростом чисел он, естественно, встречается с теми же проблемами, что и обычный метод. Если применить предложенный вариант к приведенному выше примеру, 22-значному числу 1 080 913 321 843 836 712 253, то квадратный корень из него равен примерно 32 875 725 419. Вам придется перепробовать 794 582 971 простой делитель, прежде чем вы доберетесь до нужного. Это хуже, чем искать его обычным путем.

В 1956 г. знаменитый логик Курт Гедель в письме к Джону фон Нейману почти буквально повторил мольбу Гаусса. Он спрашивал, можно ли улучшить метод пробного деления, и если можно, то насколько. Фон Нейман не стал заниматься этим вопросом, но позже другие математики ответили Геделю, открыв практические методы нахождения простых чисел длиной до 100 знаков, а иногда даже больше. Эти методы, самый известный из которых называется методом квадратичного решета, появились около 1980 г. Однако почти все они либо вероятностны, либо неэффективны в следующем смысле.

Как увеличивается компьютерное время, необходимое для вычислений, с ростом объема исходных данных? При тестировании на простоту исходные данные – это не само число, а число знаков в нем. Ключевое различие в этом случае проводится между двумя группами алгоритмов – алгоритмами, принадлежащими и не принадлежащими к классу P. Если время работы алгоритма растет как некая фиксированная степень от размера исходных данных, то алгоритм принадлежит к классу P; в противном случае – не принадлежит. Грубо говоря, алгоритмы класса P полезны, тогда как те, что не принадлежат к этому классу, непрактичны. Существует, однако, промежуточная полоса своеобразной ничьей земли, где в ход идут другие соображения. Класс P получил название от понятия «полиномиальное время» – именно так замысловато математики говорят о постоянных степенях. Мы еще вернемся к теме эффективных алгоритмов позже, в главе 11.

По стандартам класса P метод пробного деления работает из рук вон плохо. На школьном уровне, где для проверки предлагаются двух- или трехзначные числа, с ним все в порядке, но при работе со 100-значными числами он абсолютно безнадежен. В общем, пробное деление никак не укладывается в P-класс. Если быть точным, то время выполнения этого алгоритма для любого n -значного числа приблизительно равняется 10 n /2, а эта величина растет быстрее, чем любая фиксированная степень n . С таким типом роста, известным как экспоненциальный, по-настоящему трудно иметь дело, это страшный сон любого, кто занимается вычислениями.

До 1980-х гг. у всех известных алгоритмов проверки на простоту, за исключением вероятностных или тех, надежность которых оставалась недоказанной, время вычислений росло экспоненциально. Однако в 1983 г. был найден алгоритм, очень соблазнительно лежащий на ничьей земле вблизи P-территории: это уже упоминавшийся тест Адлемана – Померанса – Румели. Его улучшенная версия, разработанная Генри Коэном и Хендриком Ленстрой, имела время вычисления n в степени log log n, где log – обозначение логарифма. Технически log log n может быть сколь угодно большим, поэтому данный алгоритм не относится к P-классу. Однако это не мешает ему быть пригодным к практическому использованию: если n – гуголплекс, т. е. 1 с 10 100нулями, то log log n равен примерно 230. Старая шутка гласит: «Доказано, что log log n стремится к бесконечности, но никто никогда не видел, как он это делает».

Первый тест на простоту, принадлежащий к P-классу, открыли в 2002 г. Маниндра Агравал и его студенты-дипломники Нирадж Каял и Нитин Саксена. В Примечаниях можно прочитать об этом немного подробнее {2}. Они придумали алгоритм и доказали, что время его выполнения растет пропорционально не более чем n 12; очень скоро эта величина была уменьшена до n 7,5. Однако, несмотря на то что их алгоритм относится к P-классу и, соответственно, считается «эффективным», его преимущества не проявляются до тех пор, пока n не становится очень и очень большим. По идее этот алгоритм должен побить тест Адлемана – Померанса – Румели, когда число знаков в n приблизится к 10 1000. Но такое большое число невозможно разместить не только в память компьютера, но и вообще в известной Вселенной. Зато теперь мы точно знаем, что алгоритмы P-класса для проверки простоты числа существуют. Ясно, что поиск лучших алгоритмов в этой категории – дело ст о ящее. Ленстра и Померанс снизили степень с 7,5 до 6. Если еще некоторые предположения о свойствах простых чисел подтвердятся, степень можно будет снизить до 3, что приблизит нас к практическому применению подобных алгоритмов.

Но самое интересное в алгоритме Агравала – Каяла – Саксены – не результат, а метод. Он прост – по крайней мере для математиков – и отличается новизной. В основе его лежит вариант теоремы Ферма, но, вместо того чтобы работать с числами, команда Агравала использовала многочлены. Многочлен, или полином, – это комбинация степеней переменной x, такая, к примеру, как 5 + 4 x − 1. Многочлены можно складывать, вычитать и перемножать, и обычные алгебраические законы на них тоже распространяются. В главе 3 мы поговорим о многочленах подробнее.

По-настоящему великолепная идея: расширить пространство дискурса и перенести проблему в новую область. Это тот самый случай, когда идея проста настолько, что нужно быть гением, чтобы разглядеть ее. Первый намек на нее проскользнул в статье Агравала и его научного консультанта Сомената Бисваса: авторы предложили вероятностный тест на простоту, основанный на аналоге теоремы Ферма в мире полиномов. Агравал был убежден, что вероятностный компонент этого метода может быть устранен. В 2001 г. его студенты пришли к нему с очень важным техническим замечанием. Начав в нем разбираться, команда углубилась в дебри теории чисел, но постепенно, со временем, все замечания удалось свести к единственному препятствию – вопросу существования простого числа p, такого, чтобы число p − 1 имело бы достаточно большой простой делитель. Несколько консультаций с коллегами и поиск в Интернете помогли обнаружить теорему, которую Этьен Фуври доказал в 1985 г. при помощи сложных формальных методов. Именно этого команде Агравала недоставало, чтобы доказать работоспособность алгоритма, и последняя деталь головоломки точно встала на место.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Иэн Стюарт читать все книги автора по порядку

Иэн Стюарт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Величайшие математические задачи отзывы


Отзывы читателей о книге Величайшие математические задачи, автор: Иэн Стюарт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x