Иэн Стюарт - Величайшие математические задачи

Тут можно читать онлайн Иэн Стюарт - Величайшие математические задачи - бесплатно ознакомительный отрывок. Жанр: foreign_home, издательство Array Литагент «Альпина», год 2015. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Величайшие математические задачи
  • Автор:
  • Жанр:
  • Издательство:
    Array Литагент «Альпина»
  • Год:
    2015
  • Город:
    Москва
  • ISBN:
    978-5-9614-3705-8
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Иэн Стюарт - Величайшие математические задачи краткое содержание

Величайшие математические задачи - описание и краткое содержание, автор Иэн Стюарт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Закономерности простых чисел и теорема Ферма, гипотеза Пуанкаре и сферическая симметрия Кеплера, загадка числа π и орбитальный хаос в небесной механике. Многие из нас лишь краем уха слышали о таинственных и непостижимых загадках современной математики. Между тем, как ни парадоксально, фундаментальная цель этой науки – раскрывать внутреннюю простоту самых сложных вопросов. Английский математик и популяризатор науки, профессор Иэн Стюарт, помогает читателю преодолеть психологический барьер. Увлекательно и доступно он рассказывает о самых трудных задачах, над которыми бились и продолжают биться величайшие умы, об истоках таких проблем, о том, почему они так важны и какое место занимают в общем контексте математики и естественных наук. Эта книга – проводник в удивительный и загадочный мир чисел, теорем и гипотез, на передний край математической науки, которая новыми методами пытается разрешить задачи, поставленные перед ней тысячелетия назад.

Величайшие математические задачи - читать онлайн бесплатно ознакомительный отрывок

Величайшие математические задачи - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Иэн Стюарт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Мы вынуждены обратиться к этому вопросу потому, что не можем оставить в стороне простые числа – очень существенную деталь математического ландшафта. Особенно часто они встречаются (и особенно полезны) в теории чисел – разделе математики, изучающем свойства целых чисел. Звучит, может быть, достаточно элементарно, но на самом деле теория чисел – один из самых глубоких и сложных разделов математики. Позже мы увидим тому множество свидетельств. В 1801 г. Гаусс, ведущий специалист того времени по теории чисел (а также, по мнению некоторых ученых, один из ведущих математиков всех времен, а может быть, и величайший из них), написал продвинутый учебник по этой теории – «Арифметические исследования» ( Disquisitiones Arithmeticae ). В нем среди множества сложных тем Гаусс указал, что не следует терять из виду два весьма фундаментальных вопроса: «Известно, что задача отличения простых чисел от составных и разложения последних на простые множители является одной из важнейших и полезнейших в арифметике».

В школе, как правило, учат ровно одному способу поиска простых делителей числа. Заключается он в том, чтобы пробовать по очереди все потенциальные делители, пока не найдется такой, на который число разделится нацело. Если вы не нашли ни одного делителя к тому моменту, как добрались до корня квадратного из первоначального числа – точнее, до наибольшего целого числа, меньшего или равного этому корню, – то число это простое. В противном случае вы найдете множитель, разделите на него и продолжите с новым числом с того же места. Эффективнее всего пробовать только простые делители, но для этого необходим список простых чисел. Поиск останавливается на корне квадратном из числа, потому что наименьший делитель любого составного числа не превосходит корень квадратный из этого числа. Однако для больших чисел эта процедура безнадежно неэффективна. К примеру, если взять число

1 080 813 321 843 836 712 253,

то на простые множители оно раскладывается следующим образом:

13 929 010 429 × 77 594 408 257,

и, чтобы добраться до меньшего из двух множителей, вам придется опробовать каждое из первых 624 401 249 простых чисел. Конечно, при помощи компьютера это несложно сделать, но если взять для начала число из 100 цифр, которое – так уж случилось – раскладывается на два множителя по 50 цифр в каждом, то систематический перебор последовательных простых чисел продлится до конца Вселенной и вряд ли успеет дать результат.

Нет, вообще-то современные компьютеры, как правило, умеют раскладывать числа из 100 цифр на простые множители. Моему компу требуется меньше секунды, чтобы найти простые множители числа 10 99+ 1 (выглядит это число как 1000 … 001 с 98 нулями). Это число – результат перемножения 13 простых чисел (одно из них повторяется дважды), наименьшее из которых – 7, а наибольшее – 141 122 524 877 886 182 282 233 539 317 796 144 938 305 111 168 717.

Однако если я попрошу компьютер разложить на множители число 10 199+ 1, в котором 200 цифр, то жужжать он будет долго, но результата так и не выдаст. Хотя, конечно, даже разложение числа из 100 цифр производит сильное впечатление. В чем тут секрет? В более эффективном по сравнению с последовательным перебором потенциальных простых делителей алгоритме поиска.

Мы сегодня знаем о первой из названных Гауссом задач (проверка числа на простоту) гораздо больше, чем знал он сам, и гораздо меньше, чем хотелось бы, о второй (разложение на простые множители). Здравый смысл говорит о том, что проверка на простоту намного проще разложения на простые множители. Как правило, это удивляет нематематиков, – ведь в школе учат проверять число на простоту тем же методом, что и искать его простые множители: перебором всех возможных делителей. Но, оказывается, существуют хитрые способы доказать простоту числа и без этого. Эти же методы позволяют доказать, что число составное, без нахождения каких бы то ни было его делителей. Достаточно показать, что это число не проходит тест на простоту.

Прапрадедушкой всех современных тестов на простоту может считаться теорема Ферма (чтобы не путать со знаменитой Великой теоремой, о которой речь пойдет в главе 7, ее иногда называют Малой теоремой Ферма). Эта теорема основана на модулярной арифметике, которую иногда называют еще «часовой арифметикой», поскольку числа в ней спирально накладываются друг на друга, как время на циферблате часов. Выберем число – для 12-часовых аналоговых часов это число 12 – и назовем его модулем. Теперь в любых арифметических вычислениях с неотрицательными целыми числами мы договоримся заменять любое число, кратное 12, нулем. К примеру, 5 × 5 = 25, но 24 – это дважды 12, поэтому вычтем из результата 24. Получим 5 × 5 = 1 по модулю 12. Модулярная арифметика очень красива, поскольку почти все обычные арифметические законы в ней тоже работают. Основная разница заключается в том, что мы не всегда можем разделить одно число на другое, даже если это не нуль. Модулярная арифметика полезна также тем, что обеспечивает удобный и аккуратный способ разбираться с вопросами делимости: какие числа делятся на те или иные модули без остатка и чему равен остаток, если это не так. Модулярную арифметику предложил Гаусс в «Арифметических исследованиях», и сегодня она широко используется не только в математике, но и в информатике, физике, инженерном деле.

Малая теорема Ферма утверждает, что если взять простой модуль p и любое число a, не кратное p, то степень ( p − 1) числа a будет равна 1 по модулю p . Пусть, к примеру, p = 17 и a = 3. Тогда теорема предсказывает, что остаток от деления 3 16на 17 будет равен 1. Проверим:

3 16= 43 046 721 = 2 532 160 × 17 + 1.

Ни один человек, находящийся в своем уме, не захочет проводить подобные расчеты для, скажем, 100-значных простых чисел. К счастью, существует хитрый и быстрый способ сделать это. Смысл в том, что ответ не равен единице, если модуль, с которого мы начали, является составным числом. Так что теорема Ферма – надежная основа для эффективного теста, который обеспечивает необходимое условие простоты числа.

К несчастью, одного этого теста недостаточно. Известно, что его проходят и многие составные числа, известные как числа Кармайкла. Самое маленькое из них 561, и в 2003 г. Ред Элфорд, Эндрю Гранвиль и Карл Померанс доказали, к всеобщему изумлению, что таких чисел бесконечно много. Изумление математического сообщества вызвал тот факт, что авторам удалось найти доказательство; сам по себе результат особого удивления не вызвал. Фактически было доказано, что для каждого числа x существует по крайней мере x 2/7чисел Кармайкла, меньших или равных x, если x достаточно велико.

Однако более сложные варианты теоремы Ферма действительно можно превратить в тесты на простоту, такие как опубликованный в 1976 г. Гэри Миллером. К несчастью, доказательство достоверности теста Миллера опирается на одну из нерешенных великих математических задач – обобщенную гипотезу Римана (глава 9). В 1980 г. Майкл Рабин превратил тест Миллера в вероятностный, т. е. такой, который может иногда давать неверный ответ. Исключения, если они существуют, встречаются очень редко, но тем не менее доказать, что их нет, невозможно.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Иэн Стюарт читать все книги автора по порядку

Иэн Стюарт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Величайшие математические задачи отзывы


Отзывы читателей о книге Величайшие математические задачи, автор: Иэн Стюарт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x