Иэн Стюарт - Величайшие математические задачи

Тут можно читать онлайн Иэн Стюарт - Величайшие математические задачи - бесплатно ознакомительный отрывок. Жанр: foreign_home, издательство Array Литагент «Альпина», год 2015. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Величайшие математические задачи
  • Автор:
  • Жанр:
  • Издательство:
    Array Литагент «Альпина»
  • Год:
    2015
  • Город:
    Москва
  • ISBN:
    978-5-9614-3705-8
  • Рейтинг:
    4/5. Голосов: 11
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Иэн Стюарт - Величайшие математические задачи краткое содержание

Величайшие математические задачи - описание и краткое содержание, автор Иэн Стюарт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
Закономерности простых чисел и теорема Ферма, гипотеза Пуанкаре и сферическая симметрия Кеплера, загадка числа π и орбитальный хаос в небесной механике. Многие из нас лишь краем уха слышали о таинственных и непостижимых загадках современной математики. Между тем, как ни парадоксально, фундаментальная цель этой науки – раскрывать внутреннюю простоту самых сложных вопросов. Английский математик и популяризатор науки, профессор Иэн Стюарт, помогает читателю преодолеть психологический барьер. Увлекательно и доступно он рассказывает о самых трудных задачах, над которыми бились и продолжают биться величайшие умы, об истоках таких проблем, о том, почему они так важны и какое место занимают в общем контексте математики и естественных наук. Эта книга – проводник в удивительный и загадочный мир чисел, теорем и гипотез, на передний край математической науки, которая новыми методами пытается разрешить задачи, поставленные перед ней тысячелетия назад.

Величайшие математические задачи - читать онлайн бесплатно ознакомительный отрывок

Величайшие математические задачи - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Иэн Стюарт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

10. Условия существования решений диофантовых уравнений.Найти алгоритм, позволяющий определить, имеет ли данное полиномиальное уравнение со многими переменными решения в целых числах. Невозможность доказал Юрий Матиясевич в 1970 г.

11. Квадратичные формы с алгебраическими числами в качестве коэффициентов.Технические вопросы решения диофантовых уравнений со многими переменными. Решена частично.

12. Теорема Кронекера об абелевых полях.Технические вопросы обобщения теоремы Кронекера. Не доказана до сих пор.

13. Решение уравнений седьмой степени при помощи функций специального вида.Доказать, что общее уравнение седьмой степени не может быть решено с использованием функций двух переменных. В одной из интерпретаций возможность такого решения доказали Андрей Колмогоров и Владимир Арнольд.

14. Конечность полной системы функций.Расширить теорему Гильберта об алгебраических инвариантах на все группы преобразований. Опроверг Масаёси Нагата в 1959 г.

15. Исчислительная геометрия Шуберта.Герман Шуберт нашел нестрогий метод подчета различных геометрических конфигураций. Задача в том, чтобы сделать этот метод строгим. Полного решения до сих пор нет.

16. Топология кривых и поверхностей.Сколько связанных компонент может иметь алгебраическая кривая заданной степени? Сколько различных периодических циклов может иметь алгебраическое дифференциальное уравнение заданной степени? Ограниченное продвижение.

17. Представление определенных форм в виде суммы квадратов.Если рациональная функция всегда принимает неотрицательные значения, то должна ли она обязательно выражаться в виде суммы квадратов? Решили Эмиль Артин, Д. Дюбуа и Альбрехт Пфистер. Верно для действительных чисел, неверно в некоторых других числовых системах.

18. Заполнение пространства многогранниками.Общие вопросы о заполнении пространства конгруэнтными многогранниками. Имеет отношение к гипотезе Кеплера, ныне доказанной (см. главу 5).

19. Аналитичность решений в вариационном исчислении.Вариационное исчисление отвечает на такие вопросы, как «найти кратчайшую кривую с заданными свойствами». Если подобная задача формулируется при помощи красивых функций, то должно ли решение тоже быть красивым? Доказали Эннио де Джорджи в 1957 г. и Джон Нэш.

20. Граничные задачи.Разобраться в решениях дифференциальных уравнений физики в определенной области пространства, если заданы свойства решения на ограничивающей эту область поверхности. В основном решена (вклад внесли многие математики).

21. Существование дифференциальных уравнений с заданной монодромией.Особый тип комплексного дифференциального уравнения, в котором можно разобраться при помощи данных о его точках сингулярности и группе монодромии. Доказать, что может существовать любая комбинация этих данных. Ответ «да» или «нет» в зависимости от интерпретации.

22. Униформизация с использованием автоморфных функций.Технический вопрос об упрощении уравнений. Решил Пауль Кебе вскоре после 1900 г.

23. Развитие вариационного исчисления.Гильберт призывал к выдвижению новых идей в области вариационного исчислении. Многое сделано, но формулировка слишком неопределенная, чтобы задачу можно было считать решенной.

2

Алгоритм Агравала – Каяла – Саксены выглядит так:

• Если n представляет собой точную степень меньшего числа, выдаем СОСТАВНОЕ.

• Находим наименьшее r , такое, что наименьшая степень r , равная 1 по модулю n, больше или равна (log n )².

• Если какое-либо число, меньшее или равное r , имеет общий делитель с n , выдаем СОСТАВНОЕ.

• Если n меньше или равно r , выдаем ПРОСТОЕ.

• Для всех целых чисел a от 1 до определенного предела проверяем, совпадает ли многочлен ( x + a ) n с многочленом x n + a по модулю n и по модулю x r − 1. Если в обоих случаях ответ положительный, выдаем СОСТАВНОЕ.

• Выдаем ПРОСТОЕ.

3

Примером того, что я имею в виду, может служить формула, где квадратные скобки обозначают наибольшее целое число, меньшее или равное их содержимому. В 1947 г. У. Миллс доказал, что существует действительная константа A, такая, что для любого n вычисленное по этой формуле значение будет простым. Если считать гипотезу Римана верной, то минимальное значение A , удовлетворяющее условию, равно приблизительно 1,306. Однако эта константа определяется при помощи подходящей последовательности простых чисел, а формула – всего лишь символьный способ записи этой последовательности. Подобные формулы, включая некоторые из тех, что представляют все простые числа, представлены также на сайтах:

http://mathworld.wolfram.com/PrimeFormulas.html;

http://en.wikipedia.org/wiki/Formula_for_primes.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Иэн Стюарт читать все книги автора по порядку

Иэн Стюарт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Величайшие математические задачи отзывы


Отзывы читателей о книге Величайшие математические задачи, автор: Иэн Стюарт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x